Skip to main content

Configuring Blockchain Architectures and Consensus Mechanisms: The Healthcare Supply Chain as a Use Case

  • Chapter
  • First Online:
Blockchain Driven Supply Chains and Enterprise Information Systems

Abstract

The literature on blockchain technology in operations and supply chain management falls short in elaborating salient blockchain architectural features. Most often, it attempts to capture the difference between the public, private and consortium blockchain systems. To advance our knowledge of this distributed technology and help in a better understanding of its various applications, we focus on the consensus algorithms deployed within blockchain systems. We introduce the Proof of Work (PoW), Proof of Stake (PoS), Delegated Proof of Stake (DPoS), Proof of Authority (PoA) and Practical Byzantine Fault Tolerance (PBFT). Our paper demonstrates that many blockchain architectures and new supply chain configurations can emerge with the change in the blockchain consensus mechanism. We focus on the healthcare supply chain, one of the most appealing use cases for blockchain, to outline the architecture of state-of-the-art blockchain systems. This research is a step forwards illustrating the significant change in the concepts and practices towards fully decentralised supply chains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alkhudary, R., Brusset, X., & Fenies, P. (2020). Blockchain in general management and economics: A systematic literature review. EBR., 32, 765–783. https://doi.org/10.1108/EBR-11-2019-0297

    Article  Google Scholar 

  2. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf

  3. Alkhudary, R. (2020). Blockchain technology between Nakamoto and supply chain management: Insights from academia and practice. SSRN Journal. https://doi.org/10.2139/ssrn.3660342

  4. Kshetri, N. (2017). Blockchain’s roles in strengthening cybersecurity and protecting privacy. Telecommunications Policy, 41, 1027–1038. https://doi.org/10.1016/j.telpol.2017.09.003

    Article  Google Scholar 

  5. Queiroz, M. M., & Fosso Wamba, S. (2019). Blockchain adoption challenges in supply chain: An empirical investigation of the main drivers in India and the USA. International Journal of Information Management, 46, 70–82. https://doi.org/10.1016/j.ijinfomgt.2018.11.021

    Article  Google Scholar 

  6. Cai, Y., Choi, T., & Zhang, J. (2020). Platform supported supply chain operations in the blockchain Era: Supply contracting and moral hazards*. Decision Sciences, deci.12475. https://doi.org/10.1111/deci.12475

  7. Hald, K. S., & Kinra, A. (2019). How the blockchain enables and constrains supply chain performance. IJPDLM, 49, 376–397. https://doi.org/10.1108/IJPDLM-02-2019-0063

    Article  Google Scholar 

  8. Kamble, S., Gunasekaran, A., & Arha, H. (2019). Understanding the blockchain technology adoption in supply chains-Indian context. International Journal of Production Research, 57, 2009–2033. https://doi.org/10.1080/00207543.2018.1518610

    Article  Google Scholar 

  9. Queiroz, M. M., Telles, R., & Bonilla, S. H. (2019). Blockchain and supply chain management integration: A systematic review of the literature. SCM, 25, 241–254. https://doi.org/10.1108/SCM-03-2018-0143

    Article  Google Scholar 

  10. Agrawal, T. K., Sharma, A., & Kumar, V. (2018). Blockchain-based secured traceability system for textile and clothing supply chain. In S. Thomassey & X. Zeng (Eds.), Artificial intelligence for fashion industry in the big data era (pp. 197–208). Springer Singapore.

    Chapter  Google Scholar 

  11. Behnke, K., & Janssen, M. F. W. H. A. (2020). Boundary conditions for traceability in food supply chains using blockchain technology. International Journal of Information Management, 52, 101969. https://doi.org/10.1016/j.ijinfomgt.2019.05.025

    Article  Google Scholar 

  12. Sander, F., Semeijn, J., & Mahr, D. (2018). The acceptance of blockchain technology in meat traceability and transparency. British Food Journal, 120, 2066–2079. https://doi.org/10.1108/BFJ-07-2017-0365

    Article  Google Scholar 

  13. Chod, J., Trichakis, N., Tsoukalas, G., Aspegren, H., & Weber, M. (2020). On the financing benefits of supply chain transparency and blockchain adoption. Management Science, 66, 4378–4396. https://doi.org/10.1287/mnsc.2019.3434

    Article  Google Scholar 

  14. Kshetri, N. (2018). 1 Blockchain’s roles in meeting key supply chain management objectives. International Journal of Information Management, 39, 80–89. https://doi.org/10.1016/j.ijinfomgt.2017.12.005

    Article  Google Scholar 

  15. Wang, R., Liu, H., Wang, H., Yang, Q., & Wu, D. (2019). Distributed security architecture based on blockchain for connected health: Architecture, challenges, and approaches. IEEE Wireless Communications, 26, 30–36. https://doi.org/10.1109/MWC.001.1900108

    Article  Google Scholar 

  16. Chang, S. E., Chen, Y.-C., & Lu, M.-F. (2019). Supply chain re-engineering using blockchain technology: A case of smart contract based tracking process. Technological Forecasting and Social Change, 144, 1–11. https://doi.org/10.1016/j.techfore.2019.03.015

    Article  Google Scholar 

  17. Lacity, M. (2018). Addressing key challenges to making enterprise blockchain applications a reality. MIS Quarterly Executive., 17.

    Google Scholar 

  18. Lu, Q., & Xu, X. (2017). Adaptable blockchain-based systems: A case study for product traceability. IEEE Software, 34, 21–27. https://doi.org/10.1109/MS.2017.4121227

    Article  Google Scholar 

  19. O’Leary, D. E. (2017). Configuring blockchain architectures for transaction information in blockchain consortiums: The case of accounting and supply chain systems. Intelligent Systems in Accounting, Finance and Management, 24, 138–147. https://doi.org/10.1002/isaf.1417

    Article  Google Scholar 

  20. Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2017). An overview of blockchain technology: Architecture, consensus, and future trends. In 2017 IEEE international congress on big data (BigData Congress) (pp. 557–564). IEEE.

    Chapter  Google Scholar 

  21. Durach, C. F., Kembro, J., & Wieland, A. (2017). A new paradigm for systematic literature reviews in supply chain management. Journal of Supply Chain Management, 53, 67–85. https://doi.org/10.1111/jscm.12145

    Article  Google Scholar 

  22. Thomé, A. M. T., Scavarda, L. F., & Scavarda, A. J. (2016). Conducting systematic literature review in operations management. Production Planning & Control, 27, 408–420. https://doi.org/10.1080/09537287.2015.1129464

    Article  Google Scholar 

  23. Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence-informed management knowledge by means of systematic review. British Journal of Management, 14, 207–222. https://doi.org/10.1111/1467-8551.00375

    Article  Google Scholar 

  24. Webster, J., & Watson, R. T. (2002). Analysing the past to prepare for the future: writing a literature review. MIS Quarterly, 26, xiii–xxiii. https://doi.org/10.2307/4132319

    Article  Google Scholar 

  25. vom Brocke, J., Simons, A., Riemer, K., Niehaves, B., Plattfaut, R., & Cleven, A. (2015). Standing on the shoulders of giants: challenges and recommendations of literature search in information systems research. CAIS, 37. https://doi.org/10.17705/1CAIS.03709

  26. Okoli, C. (2015). A guide to conducting a standalone systematic literature review. CAIS, 37. https://doi.org/10.17705/1CAIS.03743

  27. Alkhudary, R., & Gardiner, P. (2021). Stages in project managers’ careers: Learning and growth opportunities. International Journal of Project Management. https://doi.org/10.1016/j.ijproman.2021.03.006

  28. Mysen, T. (2013). Towards a framework for controls as determinants of export performance: A review and analysis of empirical literature 1995-2011. European Business Review, 25, 224–242. https://doi.org/10.1108/09555341311314807

    Article  Google Scholar 

  29. Monrat, A. A., Schelen, O., & Andersson, K. (2019). A survey of blockchain from the perspectives of applications, challenges, and opportunities. IEEE Access, 7, 117134–117151. https://doi.org/10.1109/ACCESS.2019.2936094

    Article  Google Scholar 

  30. Bano, S., Sonnino, A., Al-Bassam, M., Azouvi, S., McCorry, P., Meiklejohn, S., & Danezis, G. (2019). SoK: Consensus in the age of blockchains. In Proceedings of the 1st ACM conference on advances in financial technologies (pp. 183–198). ACM.

    Chapter  Google Scholar 

  31. Bozic, N., Pujolle, G., & Secci, S. (2016). A tutorial on blockchain and applications to secure network control-planes. In 2016 3rd Smart Cloud Networks & Systems (SCNS) (pp. 1–8). IEEE.

    Google Scholar 

  32. Yazdinejad, A., Srivastava, G., Parizi, R. M., Dehghantanha, A., Choo, K.-K. R., & Aledhari, M. (2020). Decentralised authentication of distributed patients in hospital networks using blockchain. IEEE Journal of Biomedical and Health Informatics, 24, 2146–2156. https://doi.org/10.1109/JBHI.2020.2969648

    Article  Google Scholar 

  33. Akkaoui, R., Hei, X., & Cheng, W. (2020). EdgeMediChain: A hybrid edge blockchain-based framework for health data exchange. IEEE Access., 8, 113467–113486. https://doi.org/10.1109/ACCESS.2020.3003575

    Article  Google Scholar 

  34. Nguyen, C. T., Hoang, D. T., Nguyen, D. N., Niyato, D., Nguyen, H. T., & Dutkiewicz, E. (2019). Proof-of-stake consensus mechanisms for future blockchain networks: Fundamentals. Applications and Opportunities. IEEE Access., 7, 85727–85745. https://doi.org/10.1109/ACCESS.2019.2925010

    Article  Google Scholar 

  35. Mingxiao, D., Xiaofeng, M., Zhe, Z., Xiangwei, W., & Qijun, C. (2017). A review on consensus algorithm of blockchain. In 2017 IEEE international conference on systems, man, and cybernetics (SMC) (pp. 2567–2572). IEEE.

    Chapter  Google Scholar 

  36. Malamas, V., Kotzanikolaou, P., Dasaklis, T. K., & Burmester, M. (2020). A hierarchical multi blockchain for fine grained access to medical data. IEEE Access., 8, 134393–134412. https://doi.org/10.1109/ACCESS.2020.3011201

    Article  Google Scholar 

  37. Yang, X., Li, T., Pei, X., Wen, L., & Wang, C. (2020). Medical data sharing scheme based on attribute cryptosystem and blockchain technology. IEEE Access., 8, 45468–45476. https://doi.org/10.1109/ACCESS.2020.2976894

    Article  Google Scholar 

  38. He, Q., Guan, N., Lv, M., & Yi, W. (2018). On the consensus mechanisms of blockchain/DLT for internet of things. In 2018 IEEE 13th international symposium on industrial embedded systems (SIES) (pp. 1–10). IEEE.

    Google Scholar 

  39. Yadav, A. K., & Singh, K. (2020). Comparative analysis of consensus algorithms of blockchain technology. In Y.-C. Hu, S. Tiwari, M. C. Trivedi, & K. K. Mishra (Eds.), Ambient communications and computer systems (pp. 205–218). Springer Singapore.

    Chapter  Google Scholar 

  40. Carrara, G. R., Burle, L. M., Medeiros, D. S. V., de Albuquerque, C. V. N., & Mattos, D. M. F. (2020). Consistency, availability, and partition tolerance in blockchain: A survey on the consensus mechanism over peer-to-peer networking. Annales des Telecommunications, 75, 163–174. https://doi.org/10.1007/s12243-020-00751-w

    Article  Google Scholar 

  41. Abdellatif, A. A., Al-Marridi, A. Z., Mohamed, A., Erbad, A., Chiasserini, C. F., & Refaey, A. (2020). ssHealth: Toward secure, blockchain-enabled healthcare systems. IEEE Network, 34, 312–319. https://doi.org/10.1109/MNET.011.1900553

    Article  Google Scholar 

  42. Wang, Z., Luo, N., & Zhou, P. (2020). GuardHealth: Blockchain empowered secure data management and Graph Convolutional Network enabled anomaly detection in smart healthcare. Journal of Parallel and Distributed Computing, 142, 1–12. https://doi.org/10.1016/j.jpdc.2020.03.004

    Article  Google Scholar 

  43. Curran, B. (2018). What is proof of authority consensus? Staking your identity on the blockchain. https://blockonomi.com/proof-of-authority/

  44. Cong An, A., Thi Xuan Diem, P., Thi Thu Lan, L., Van Toi, T., & Duong Quoc Binh, L. (2019). Building a product origins tracking system based on blockchain and PoA consensus protocol. In 2019 international conference on advanced computing and applications (ACOMP) (pp. 27–33). IEEE.

    Chapter  Google Scholar 

  45. Singh, P. K., Singh, R., Nandi, S. K., & Nandi, S. (2019). Managing Smart home appliances with proof of authority and blockchain. In K.-H. Lüke, G. Eichler, C. Erfurth, & G. Fahrnberger (Eds.), Innovations for community services (pp. 221–232). Springer International Publishing.

    Chapter  Google Scholar 

  46. Hölbl, M., Kompara, M., Kamišalić, A., & Nemec Zlatolas, L. (2018). A systematic review of the use of blockchain in healthcare. Symmetry., 10, 470. https://doi.org/10.3390/sym10100470

    Article  Google Scholar 

  47. Zhu, X., Shi, J., & Lu, C. (2019). Cloud health resource sharing based on consensus-oriented blockchain technology: Case study on a breast tumor diagnosis service. Journal of Medical Internet Research, 21, e13767. https://doi.org/10.2196/13767

    Article  Google Scholar 

  48. Lee, H.-A., Kung, H.-H., Udayasankaran, J. G., Kijsanayotin, B. B., Marcelo, A., Chao, L. R., & Hsu, C.-Y. (2020). An architecture and management platform for blockchain-based personal health record exchange: Development and usability study. Journal of Medical Internet Research, 22, e16748. https://doi.org/10.2196/16748

    Article  Google Scholar 

  49. Miguel, C., & Barbara, L. (1999). Practical byzantine fault tolerance.

    Google Scholar 

  50. Wu, Y., Song, P., & Wang, F. (2020). Hybrid consensus algorithm optimization: A mathematical method based on POS and PBFT and its application in blockchain. Mathematical Problems in Engineering, 2020, 1–13. https://doi.org/10.1155/2020/7270624

    Article  Google Scholar 

  51. Zhang, L., & Li, Q. (2018). Research on consensus efficiency based on practical byzantine fault tolerance. In 2018 10th international conference on modelling, identification and control (ICMIC) (pp. 1–6). IEEE.

    Google Scholar 

  52. Zheng, X., & Feng, W. (2021). Research on practical byzantine fault tolerant consensus algorithm based on blockchain. Journal of Physics: Conference Series, 1802, 032022. https://doi.org/10.1088/1742-6596/1802/3/032022

    Article  Google Scholar 

  53. Zghaibeh, M., Farooq, U., Hasan, N. U., & Baig, I. (2020). SHealth: A blockchain-based health system with smart contracts capabilities. IEEE Access, 8, 70030–70043. https://doi.org/10.1109/ACCESS.2020.2986789

    Article  Google Scholar 

  54. Pournaghi, S. M., Bayat, M., & Farjami, Y. (2020). MedSBA: A novel and secure scheme to share medical data based on blockchain technology and attribute-based encryption. Journal of Ambient Intelligence Humanized Computing, 11, 4613–4641. https://doi.org/10.1007/s12652-020-01710-y

    Article  Google Scholar 

  55. Pandey, P., & Litoriya, R. (2020). Implementing healthcare services on a large scale: Challenges and remedies based on blockchain technology. Health Policy and Technology, 9, 69–78. https://doi.org/10.1016/j.hlpt.2020.01.004

    Article  Google Scholar 

  56. Praveen, G., Anand, M., Singh, P. K., & Ranjan, P. (2021). An overview of blockchain consensus and vulnerability. In T. Senjyu, P. N. Mahalle, T. Perumal, & A. Joshi (Eds.), Information and communication technology for intelligent systems (pp. 459–468). Springer Singapore.

    Chapter  Google Scholar 

  57. Kaur, S., Chaturvedi, S., Sharma, A., & Kar, J. (2021). A research survey on applications of consensus protocols in blockchain. Security and Communication Networks, 2021, 1–22. https://doi.org/10.1155/2021/6693731

    Article  Google Scholar 

  58. Bodkhe, U., Mehta, D., Tanwar, S., Bhattacharya, P., Singh, P. K., & Hong, W.-C. (2020). A survey on decentralized consensus mechanisms for cyber physical systems. IEEE Access, 8, 54371–54401. https://doi.org/10.1109/ACCESS.2020.2981415

    Article  Google Scholar 

  59. Kaur, M., Khan, M. Z., Gupta, S., Noorwali, A., Chakraborty, C., & Pani, S. K. (2021). MBCP: Performance analysis of large scale mainstream blockchain consensus protocols. IEEE Access., 9, 80931–80944. https://doi.org/10.1109/ACCESS.2021.3085187

    Article  Google Scholar 

  60. Bamakan, S. M. H., Motavali, A., & Babaei Bondarti, A. (2020). A survey of blockchain consensus algorithms performance evaluation criteria. Expert Systems with Applications, 154(113385). https://doi.org/10.1016/j.eswa.2020.113385

  61. Azbeg, K., Ouchetto, O., Jai Andaloussi, S., & Fetjah, L. (2021). An overview of blockchain consensus algorithms: Comparison, challenges and future directions. In F. Saeed, T. Al-Hadhrami, F. Mohammed, & E. Mohammed (Eds.), Advances on smart and soft computing (pp. 357–369). Springer Singapore.

    Chapter  Google Scholar 

  62. Wan, S., Li, M., Liu, G., & Wang, C. (2020). Recent advances in consensus protocols for blockchain: A survey. Wireless Networks, 26, 5579–5593. https://doi.org/10.1007/s11276-019-02195-0

    Article  Google Scholar 

  63. Lao, L., Li, Z., Hou, S., Xiao, B., Guo, S., & Yang, Y. (2020). A survey of IoT applications in blockchain systems: Architecture, consensus, and traffic modeling. ACM Computing Surveys, 53, 1–32. https://doi.org/10.1145/3372136

    Article  Google Scholar 

  64. Khan, D., Jung, L. T., Ahmed Hashmani, M., & Waqas, A. (2020). A critical review of blockchain consensus model. In 2020 3rd international conference on computing, mathematics and engineering technologies (iCoMET) (pp. 1–6). IEEE.

    Google Scholar 

  65. Alam Khan, F., Asif, M., Ahmad, A., Alharbi, M., & Aljuaid, H. (2020). Blockchain technology, improvement suggestions, security challenges on smart grid and its application in healthcare for sustainable development. Sustainable Cities and Society, 55, 102018. https://doi.org/10.1016/j.scs.2020.102018

    Article  Google Scholar 

  66. Tang, H., Sun, Y., & Ouyang, J. (2020). Excellent practical byzantine fault tolerance. Journal of Cyber Security, 2, 167–182. https://doi.org/10.32604/jcs.2020.011341

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan Al-Sumaidaee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Sumaidaee, G., Alkhudary, R., Zilic, Z., Féniès, P. (2023). Configuring Blockchain Architectures and Consensus Mechanisms: The Healthcare Supply Chain as a Use Case. In: Bouras, A., Khalil, I., Aouni, B. (eds) Blockchain Driven Supply Chains and Enterprise Information Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-96154-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96154-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96153-4

  • Online ISBN: 978-3-030-96154-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics