Skip to main content

A Brief History of the Development of Nanobiotechnology-Based Blood Substitutes

  • Chapter
  • First Online:
Blood Substitutes and Oxygen Biotherapeutics
  • 595 Accesses

Abstract

Research on nanobiotechnological hemoglobin-based blood substitutes had started back in 1957. However, it was the H.I.V. contaminated donor blood crisis in the late 1980s that led to the urgent but belated development of nanobiotechnology based hemoglobin-based oxygen carriers (HBOCs) in the form of polyhemoglobin, conjugated hemoglobin, intramolecularly crosslinked tetrameric hemoglobin and recombinant hemoglobin. This aim for H.I.V. was reached only in 2002, when bovine polyhemoglobin was approved for clinical use in South Africa and Russia to avoid the use of H.I.V. contaminated donor blood. HBOC oxygen carriers could be useful for clinical conditions requiring oxygen supply. However, other conditions would require the other two functions of red blood cell (rbc): antioxidants and transport of carbon dioxide. Thus, different approaches were developed for HBOC with antioxidant functions and more recently, HBOC oxygen carrier with enhancement of both antioxidant and CO2 transport functions. The early complete artificial cell were developed into PEG-lipid membrane and PEG-polylactide nano-dimension artificial rbc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abuchowski A. SANGUINATE® PEGylated bovine hemoglobin with dual carbon monoxide and oxygen delivery agent with anti-inflammatory and anti-vasoconstrictive properties. Abstract 2017 International Symposium on blood substitutes www.artcell.mcgill.ca. 2017.

  2. Abuchowski A, Es TV, Palczuk NC, Davis FF. Alteration of immunological properties of bovine serum albumi by convalent attachment of polyethylene glycol. J Biol Chem. 1977;252:2578–3581.

    Article  Google Scholar 

  3. Acharya SA, Tsai AG, Intaglietta M. EAF PEG hemoglobins: novel class of non-hypertensive resuscitation fluids: simplicity and advantages of extension arm chemistry for PEGylation. In: Chang TMS, editor. Selected topics in nanomedicine. Singapore: World Science Publisher/Imperial College Press; 2013.

    Google Scholar 

  4. Alayash AI. Oxygen therapeutics: can we tame Hb. Nat Rev Drug Discov. 2004;3:152–9.

    Article  CAS  PubMed  Google Scholar 

  5. Alayash AI. Unravelling of hemoglobin oxidative toxicity: thirty years of investigation. In: Chang TMS, Bulow L, Jahr JS, Sakai H, Yang CM, editors. Nanobiotherapeutic based blood substitutes. Singapore: World Science Publisher; 2021.

    Google Scholar 

  6. Alomari EAH, Ronda L, Bettati S, Mozzarelli A, Bruno S. Modulation of oxygen affinity in hemoglobin-based oxygen carriers. In: Chang TMS, Bulow L, Jahr JS, Sakai H, Yang CM, editors. Nanobiotherapeutic based blood substitutes. Singapore: World Science Publisher; 2021.

    Google Scholar 

  7. Amberson WR. Blood substitute. Biol Rev. 1937;12:48.

    Article  Google Scholar 

  8. Bangham AD, et al. Diffusion of univalent ions across the lamellae of swollenphospholipids. J Mol Biol. 1965;13:238–52.

    Article  CAS  PubMed  Google Scholar 

  9. Bäumler H, Georgieva R. Hemoglobin-based oxygen carriers HbMP-700 can deliver more than oxygen. Biomacromolecules. 2010;11:1480–7.

    Article  PubMed  CAS  Google Scholar 

  10. Bian Y, Chang TMS. A novel nanobiotherapeutical Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] with no cardiac toxicity for the resuscitation of a 90 minutes sustained severe hemorrhagic shock rat model with 2/3 blood volume loss. Artif Cells Nanomed Biotechnol. 2015;43(1):1–9. http://www.medicine.mcgill.ca/artcell/2015bian&chang.pdf.

    Article  PubMed  CAS  Google Scholar 

  11. Bian Y, Guo C, Chang TMS. Temperature stability of Poly-[hemoglobinsuperoxide dismutase–catalase- carbonic anhydrase] in the form of a solution or in the lyophilized form during storage at −80 °C, 4 °C, 25 °C and 37 °C or pasteurization at 70 °C. Artif Cells Nanomed Biotechnol. 2016;44:41–7.

    Article  CAS  PubMed  Google Scholar 

  12. Biro G. Rationale, evidence-based transfusion: a physiologist’s perspective. In: Chang TMS, Bulow L, Jahr JS, Sakai H, Yang CM, editors. Nanobiotherapeutic based blood substitutes. Singapore: World Science Publisher; 2021.

    Google Scholar 

  13. Bucci E. Basic science offers a challenge for developing hemoglobin based oxygen carriers into therapeutic agent. Artif Cells Blood Substit Immobil Biotechnol. 2011;39:206–13.

    Article  CAS  PubMed  Google Scholar 

  14. Buehler PW, Haney CR, Gulati A, Ma L, Hsia CJ. Polynitroxyl hemoglobin: a pharmacokinetic study of covalently bound nitroxides to hemoglobin platforms. Free Radic Biol Med. 2004;37(1):124–35.

    Article  CAS  PubMed  Google Scholar 

  15. Bunn HF, Jandl JH. The renal handling of hemoglobin. Trans Assoc Am Phys. 1968;81:147.

    CAS  PubMed  Google Scholar 

  16. Burhop KE, Estep TE. Hb induced myocardial lesions. Artif Cells Blood Substit Immobil Biotechnol. 2001;29:101–6.

    Google Scholar 

  17. Chan G, Chang TMS. Dual effects include antioxidant and pro-oxidation of ascorbic acid on the redox properties of bovine hemoglobin. In: Chang TMS, Bulow L, Jahr JS, Sakai H, Yang CM, editors. Nanobiotherapeutic based blood substitutes. Singapore: World Science Publisher; 2021.

    Google Scholar 

  18. Chang TMS. Hemoglobin corpuscles. Report of a research project for Honours Physiology, Medical Library, McGill University. Also reprinted in full in Chang;s 2007 Monograph on “Artificial Cells”. 1957.

    Google Scholar 

  19. Chang TMS. Semipermeable microcapsules. Science. 1964;146:524–5.

    Article  CAS  PubMed  Google Scholar 

  20. Chang TMS. Semipermeable aqueous microcapsules. Ph.D. Thesis, McGill University. 1965.

    Google Scholar 

  21. Chang TMS. Stabilisation of enzymes by microencapsulation with a concentrated protein solution or by microencapsulation followed by cross-linking with glutaraldehyde. Biochem Biophys Res Commun. 1971;44:1531–6.

    Article  CAS  PubMed  Google Scholar 

  22. Chang TMS. Artificial cells. Springfield: Charles C. Thomas; 1972. (out of print but available for free online viewing/download at www.artcell.mcgill.ca).

    Google Scholar 

  23. Chang TMS. Biodegradable semipermeable microcapsules containing enzymes, hormones, vaccines, and other biologicals. J Bioeng. 1976;1:25–32.

    CAS  PubMed  Google Scholar 

  24. Chang TMS. Red blood cell substitutes: principles, methods, products and clinical trials, vol. I (Monograph). Basel: Karger/Landes Systems; 1997. (available for free online viewing at www.artcell.mcgill.ca or www.artificialcell.info).

    Google Scholar 

  25. Chang TMS. Therapeutic applications of polymeric artificial cells. Nat Rev Drug Discov. 2005;4:221–35.

    Article  CAS  PubMed  Google Scholar 

  26. Chang TMS. Monograph on “ARTIFICIAL CELLS: biotechnology, nanotechnology, blood substitutes, regenerative medicine, bioencapsulation, cell/stem cell therapy”. Singapore: World Scientific Publisher/Imperial College Press; 2007, 435 pages. (available for free online viewing/download at www.artcell.mcgill.ca)

  27. Chang TMS. Translational feasibility of soluble nanobiotherapeutics with enhanced red blood cell functions. Artif Cells Nanomed Biotechnol. 2017;45:671–6.

    Article  CAS  PubMed  Google Scholar 

  28. Chang TMS. ARTIFICIAL CELL evolves into nanomedcine, biotherapeutics, blood substitutes, drug delivery, enzyme/gene therapy, cancer therapy, cell/stem cell therapy, nanoparticles, liposomes, bioencapsulation, replicating synthetic cells, cell encapsulation/scaffold, biosorbent/immunosorbent hemoperfusion/plasmapheresis, regenerative medicine, encapsulated microbe, nanobiotechnology, nanotechnology. Artif Cells Nanomed Biotechnol. 2019;47(1):997–1013. https://doi.org/10.1080/21691401.2019.1577885.

    Article  CAS  PubMed  Google Scholar 

  29. Chang TMS. Artificial Cells, Blood Substitutes and Nanomedicine website containing reviews and monographs for free online viewing or download www.artcell.mcgill.ca. 2021.

  30. Chang TMS, Poznansky MJ. Semipermeable microcapsules containing catalase for enzyme replacement in acatalsaemic mice. Nature. 1968;218:242–5.

    Article  Google Scholar 

  31. Chang TMS, Powanda D, Yu WP. Analysis of polyethyleneglycolpolylactide nano-dimension artificial red blood cells in maintaining systemic hemoglobin levels and prevention of methemoglobin formation. Artif Cells Blood Substit Immobil Biotechnol. 2003;31:231–48.

    Article  CAS  PubMed  Google Scholar 

  32. Chang EJ, Lee TH, Mun KC, et al. Effects of polyhemoglobinantioxidant enzyme complex on ischemia-reperfusion in kidney. Transplant Proc. 2004;36:1952–4.

    Article  CAS  PubMed  Google Scholar 

  33. Chang TMS, Jiang WH, D’Agnillo F, Razack S. Nanobiotherapeutics as preservation fluids for organs ans cells. In: Chang TMS, Bulow L, Jahr JS, Sakai H, Yang CM, editors. Nanobiotherapeutic based blood substitutes. Singapore: World Science Publisher; 2021.

    Google Scholar 

  34. Chang TMS, Bulow L, Jar J, Saika H, Yang CM, editors. Book on Nanobitherapeutic based blood substitutes. Singapore: World Science Publisher; 2021.

    Google Scholar 

  35. D’Agnillo F, Chang TMS. Polyhemoglobin-superoxide dismutasecatalase as a blood substitute with antioxidant properties. Nat Biotechnol. 1998;16:667–71.

    Article  PubMed  Google Scholar 

  36. Deamer DW, Bangham AD. Large-volume liposomes by an ether vaporization method. Biochim Biophys Acta. 1976;443:629–34.

    Article  CAS  PubMed  Google Scholar 

  37. DeVenuto F, Zegna A. Blood exchange with pyridoxalated-polymerized hemoglobin. Surg Gynecol Obstet. 1982;155:342.

    CAS  PubMed  Google Scholar 

  38. Djordjevich L, Miller IF. Synthetic erythrocytes from lipid encapsulated hemoglobin. Exp Hematol. 1980;8:584.

    CAS  PubMed  Google Scholar 

  39. Doherty DH, Doyle MP, Curry SR, et al. Rate of reaction with nitric oxide determine the hypertensive effect of cell free hemoglobin. Nat Biotechnol. 1998;16:672–6.

    Article  CAS  PubMed  Google Scholar 

  40. Dudziak R, Bonhard K. The development of hemoglobin preparations for various indications. Anesth. 1980;29:181.

    CAS  Google Scholar 

  41. Estep TN. Hemoglobin based oxygen carriers, volume expansion, fluid management, and anemia. In: Chang TMS, Bulow L, Jahr JS, Sakai H, Yang CM, editors. Nanobiotherapeutic based blood substitutes. Singapore: World Science Publisher; 2021.

    Google Scholar 

  42. Estep TN. Hemoglobin based oxygen carriers and myocardial infarction: assessment of potential mechanisms. In: Chang TMS, Bulow L, Jahr JS, Sakai H, Yang CM, editors. Nanobiotherapeutic based blood substitutes. Singapore: World Science Publisher; 2021.

    Google Scholar 

  43. Farmer MC, Rudolph AS, Vandegriff KD, Havre MD, Bayne SA, Johnson SA. Lipsome-encapsulated hemoglobin: oxygen binding properties and respiratory function. Biomater Artif Cells Artif Organs. 1988;16:289–99.

    Article  CAS  PubMed  Google Scholar 

  44. Feola M, Gonzalez H, Canizaro PC, Bingham D. Development of bovine stroma-free hemoglobin solution as a blood substitute. Surg Gynecol Obstet. 1983;157:399.

    CAS  PubMed  Google Scholar 

  45. Fratantoni JC. Points to consider on efficacy evaluation of hemoglobin and perfluorocarbon based oxygen carriers. Transfusion. 1994;34:712–71.

    Article  Google Scholar 

  46. Gould SA, et al. The life-sustaining capacity of human polymerized hemoglobin when red cells might be unavailable. J Am Coll Surg. 2002;195:445–52.

    Article  PubMed  Google Scholar 

  47. Greenburg AG, Kim HW. Evaluating new red cell substitutes: a critical analysis of toxicity models. Biomater Artif Cell Immobil Biotechnol. 1992;20:575–81.

    CAS  Google Scholar 

  48. Guo C, Chang TMS. Long term safety and immunological effects of a nanobiotherapeutic, bovine poly-[hemoglobin-catalasesuperoxide dismutase-carbonic anhydrase], after four weekly 5% blood volume toploading followed by a challenge of 30% exchange transfusion. Artif Cells Nanomed Biotechnol. 2018;46(7):1349–63. www.artcell.mcgill.ca/safety_immune.pdf.

    Article  CAS  PubMed  Google Scholar 

  49. Guo C, Gynn M, Chang TMS. Extraction of superoxide dismutase, catalase and carbonic anhydrase from stroma-free red blood cell hemolysate for the preparation of the nanobiotechnological complex of PolyHemoglobin-superoxide dismutase-catalase-carbonic anhydrase. Artif Cells Nanomed Biotechnol. 2015;43(3):157–62.

    Article  PubMed  CAS  Google Scholar 

  50. Han JQ, Yu MH, Dai M, Li HW, Xiu RJ, Liu Q. Decreased expression of MDR1 in PEG-conjugated hemoglobin solution combined cisplatin treatment in a tumor xenograft model. Artif Cells Blood Substit Immobil Biotechnol. 2012;40:239–44.

    Article  CAS  PubMed  Google Scholar 

  51. Hoffman SJ, Looker DL, Roehrich JM, et al. Expression of fully functional tetrameric human hemoglobin in Escherichia coli. Proc Natl Acad Sci U S A. 1990;87:8521–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hsia JC, Song DL, Er SS, Wong LTL. Pharmacokinetic studies on a raffinose-polymerized human hemoglobin in the rat. Biomater Artif Cell Immobil Biotechnol. 1992;20:587–96.

    CAS  Google Scholar 

  53. Iwashita Y. Relationship between chemical properties and biological properties of pyridoxalated hemoglobin-polyoxyethylene. Biomater Artif Cell Immobil Biotechnol. 1992;20:299–308.

    CAS  Google Scholar 

  54. Jahr JS. Hemoglobin-glutamer 250 (bovine) [HBOC-201, Hemopure®] clinical use in South Africa and comprehensive review of cardiac outcomes and risk/benefit in PeerReviewed, indexed studies in humans and animal models. In: Chang TMS, Bulow L, Jahr JS, Sakai H, Yang CM, editors. Nanobiotherapeutic based blood substitutes. Singapore: World Science Publisher; 2021.

    Google Scholar 

  55. Jahr JS, Mackenzie C, Pearce LB, Pitman A, Greenburg AG. HBOC-201 as an alternative to blood transfusion: efficacy and safety evaluation in a multicenter phase III trial in elective orthopaedic surgery. J Trauma. 2008;64:1484–97.

    CAS  PubMed  Google Scholar 

  56. Jia YP, Alayash AI. Molecular basis of haptoglobin and hemoglobin complex formation and protection against oxidative stress and damage. In: Chang TMS, editor. Selected topics in nanomedicine. Singapore: World Science Publisher/Imperial College Press; 2013.

    Google Scholar 

  57. Keipert P, Chang TMS. In-vivo effects of total and partial isovolemic exchange transfusion in fully conscious rats using pyridoxalated polyhemoglobin solution as a colloidal oxygen-delivery blood substitute. Vox Sang. 1987;53:7–14.

    Article  CAS  PubMed  Google Scholar 

  58. Kettisen K, Bülow L. Cysteine mutations in recombinant fetal hemoglobin influence oxidative side-reactions. In: Chang TMS, Bulow L, Jahr JS, Sakai H, Yang CM, editors. Nanobiotherapeutic based blood substitutes. Singapore: World Science Publisher; 2021.

    Google Scholar 

  59. Kim HW, Greenburg AG, editors. Hemoglobin-based oxygen carriers as red cell substitutes and oxygen therapeutics. New York, London: Springer; 2014. 738 pages.

    Google Scholar 

  60. Klein HG. The prospects for red-cell substitutes. N Engl J Med. 2000;342(22):1666–8.

    Article  CAS  PubMed  Google Scholar 

  61. Kobayashi K, Tsuchida E, Horinouchi H, editors. Artificial oxygen carriers. Singapore: Spring; 2005.

    Google Scholar 

  62. Komatsu T. Hemoglobin-albumin cluster “HemoAct™” as an artificial O2-carrier. Abstract, 2017 International Symposium on Blood Substitutes. www.artcell.mcgill.ca. 2017.

  63. Li XZ, Zhang XW, Liu Q. Determination of the molecular weight distribution of PEGylated bovine hemoglobin (PEG-bHb). Artif Cells Blood Substit Immobil Biotechnol. 2005;33:13–28.

    Article  CAS  PubMed  Google Scholar 

  64. Li T, Yu R, Zhang HH, Liang WG, Yang XM, Yang CM. A method for purification and viral inactivation of human placenta hemoglobin. Artif Cells Blood Substit Immobil Biotechnol. 2006;34(2):175–88.

    Article  PubMed  CAS  Google Scholar 

  65. Liu ZC, Chang TMS. Effects of PEG-PLA-nano artificial cells containing hemoglobin on kidney function and renal histology in rats. Artif Cells Blood Substit Immobil Biotechnol. 2008;36:421–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Liu ZC, Chang TMS. Long term effects on the histology and function of livers and spleens in rats after 33% toploading of PEG-PLA-nano artificial red blood cells. Artif Cells Blood Substit Immobil Biotechnol. 2008;36:513–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Liu Q, Xiu RJ. Proceedings of the XI ISBS Symposium at Peking Union Medical College, Chinese Academy of Medical Sciences. Artif Cells Blood Substit Immobil Biotechnol. 2008;36(3):169–293.

    Google Scholar 

  68. Liu XB, Li CX, Qi X, Wong BL, Man K. The application of hemoglobin-based oxygen carriers in liver cancer treatment in rodent models. In: Chang TMS, Bulow L, Jahr JS, Sakai H, Yang CM, editors. Nanobiotherapeutic based blood substitutes. Wahington D.C.: World Science Publisher; 2021.

    Google Scholar 

  69. Looker D, Abbott-Brown D, Cozart P, et al. A human recombinant hemoglobin designed for use as a blood substitute. Nature. 1992;356:258–60.

    Article  CAS  PubMed  Google Scholar 

  70. Ma L, Hsia CJC. Polynitroxylated hemoglobin as a multifunctional therapeutic for critical care and transfusion medicine. In: Chang TMS, editor. Selected topics in nanomedicine. Singapore: World Science Publisher/Imperial College Press; 2013.

    Google Scholar 

  71. Mazurier C, Douay L, Lapillonne H. Red blood cells from induced pluripotent stem cells: hurdles and developments. Curr Opin Hematol. 2011;18:249–53.

    Article  PubMed  Google Scholar 

  72. Mer M, Hodgson E, Wallis L, Jacobson B, Levien L, Snyman J, Sussman MJ, James M, van Gelder A, Allgaier R, Jahr JS. Hemoglobin glutamer-250 (bovine) in South Africa: consensus usage guidelines from clinician experts who have treated patients. Transfusion. 2016;56:2631–16.

    Article  PubMed  Google Scholar 

  73. Moore E, Moore FA, Fabian TC, Bernard AC, Fulda GJ, Hoyt DB, et al. Human polymerized hemoglobin for the treatment of hemorrhagic shock when blood is unavailable: the USA multicenter trial. J Am Coll Surg. 2009;208:1–13.

    Article  PubMed  Google Scholar 

  74. Moss GS, Gould SA, Sehgal LR, Sehgal HL, Rosen AL. Hemoglobin solution - from tetramer to polymer. Biomater Artif Cells Artif Organs. 1988;16:57–69.

    Article  CAS  Google Scholar 

  75. Nadithe V, Bae YH. Hemoglobin conjugates with antioxidant enzymes (hemoglobin-superoxide dismutase-catalase) via poly(ethylene glycol) crosslinker for protection of pancreatic beta RINm5F cells in hypoxia. Tissue Eng. 2011;17:24532462.

    Google Scholar 

  76. Nadithe V, Bae YH. Hemoglobin conjugates with antioxidant enzymes (hemoglobin-superoxide dismutase-catalase) via poly(ethylene glycol) crosslinker for protection of pancreatic beta RINm5F cells in hypoxia. Tissue Eng. 2011;17:2453–62.

    Article  CAS  Google Scholar 

  77. Natanson C, Kern SJ, Lurie P, Banks SM, Wolfe SM. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. JAMA. 2008;299:2304–12.

    Article  CAS  PubMed  Google Scholar 

  78. Ono-Uruga Y, Tozawa K, Ikeda Y, Matsubara Y. Megakaryocytes and platelets from novel human adipose tissue-derived mesenchymal stem cells: development of cell based regenerative medicine. In: Chang TMS, Bulow L, Jahr JS, Sakai H, Yang CM, editors. Nanobiotherapeutic based blood substitutes. Singapore: World Science Publisher; 2021.

    Google Scholar 

  79. Park YK, Abuchowski A, Davis S, Davis F. Pharmacology of Escherichia coli-L-asparaginase polyethylene glycol adduct. Anticancer Res. 1981;1:373–6.

    CAS  PubMed  Google Scholar 

  80. Pearce LB, Gawryl MS. Overview of preclinical and clinical efficacy of Biopure’s HBOCs. In: Chang TMS, editor. Blood substitutes: principles, methods, products and clinical trials, vol. 2. Basel: Karger; 1998. p. 82–98.

    Google Scholar 

  81. Perutz MF. Stereochemical mechanism of oxygen transport by hemoglobin. Proc R Soc Lond B. 1980;208:135.

    Article  CAS  PubMed  Google Scholar 

  82. Philips WT, Klpper RW, Awasthi VD, Rudolph AS, Cliff R, Kwasiborski VV, Goins BA. Polyethylene glyco-modified liposome-encapsulated Hb: a long circulating red cell substitute. J Pharmacol Exp Ther. 1999;288:665–70.

    Google Scholar 

  83. Powanda D, Chang TMS. Cross-linked polyhemoglobin-superoxide dismutase-catalase supplies oxygen without causing blood brain barrier disruption or brain edema in a rat model of transient global brain ischemia-reperfusion. Artif Cells Blood Substit Immobil Biotechnol. 2002;30:25–42.

    Article  Google Scholar 

  84. Przybelski R, Blue J, Nanvaty M, Goldberg C, Estep T, Schmitz T. Clinical studies with diaspirin cross-linked hemoglobin solution (DCLHb™): a review and update. Artif Cells Blood Substit Immobil Biotechnol. 1996;24(abstracts issue):407.

    Google Scholar 

  85. Rabiner SF, Helbert JR, Lopas H, Friedman LH. Evaluation of stroma free hemoglobin solution as a plasma expander. J Exp Med. 1967;126:1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Razack S, D’Agnillo F, Chang TMS. Crosslinked hemoglobin-superoxide dismutase-catalase scavenges free radicals in a rat model of intestinal ischemia reperfusion injury. Artif Cells Blood Substit Immobil Biotechnol. 1997;25:181–92.

    Article  CAS  PubMed  Google Scholar 

  87. Robinson MF, Dupuis NP, Kusumoto T, Liu F, Menon K, Teicher BA. Increased tumor oxygenation and radiation sensitivity in two rat tumors by a hemoglobin-based oxygen carrying preparation. Artif Cells Blood Substit Immobil Biotechnol. 1995;23:431–8.

    Article  CAS  PubMed  Google Scholar 

  88. Rousselot M, Delpy E, Drieu La Rochelle C, Lagente V, Pirow R, Rees JF, Hagege A, Le Guen D, Hourdez S, Zal F. Arenicola marina extracellular hemoglobin: a new promising blood substitute. Biotechnol J. 2006;1(3):333–45.

    Article  CAS  PubMed  Google Scholar 

  89. Rudolph AS. Encapsulated hemolgobin: current issues and future goals. Artif Cells Blood Substit Immobil Biotechnol. 1994;22:347–60.

    Article  CAS  PubMed  Google Scholar 

  90. Sakai H. Biocompatibility of a highly concentrated fluid of hemoglobin-vesicles as a transfusion alternative. In: Chang TMS, editor. Selected topics in nanomedicine. Singapore: World Science Publisher/Imperial College Press; 2013.

    Google Scholar 

  91. Sakai H, Yamada M. Prevention of methemoglobin formation in artificial red cells (hemoglobin-vesicles). In: Chang TMS, Bulow L, Jahr JS, Sakai H, Yang CM, editors. Nanobiotherapeutic based blood substitutes. Singapore: World Science Publisher; 2021.

    Google Scholar 

  92. Sakai H, Azuma H, Horinouchi H, Kobayashi K. Translational research of Hbvesicles (artificial red cells) for a transfusion alternative and O2/CO therapeutics. In: Chang TMS, Bulow L, Jahr JS, Sakai H, Yang CM, editors. Nanobiotherapeutic based blood substitutes. Singapore: World Science Publisher; 2021.

    Google Scholar 

  93. Savitsky JP, Doozi J, Black J, Arnold JD. A clinical safety trial of stroma free hemoglobin. Clin Pharmacol Ther. 1978;23:73.

    Article  CAS  PubMed  Google Scholar 

  94. Sheng Y, Yuan Y, Liu C, Tao X, Shan X, Xu F. In vitro macrophage uptake and in vivo biodistribution of PLA–PEG nanoparticles loaded with hemoglobin as blood substitutes: effect of PEG content. J Mater Sci Mater Med. 2009;20(9):1881–91.

    Article  CAS  PubMed  Google Scholar 

  95. Shoemaker S, Gerber M, Evans G, Paik L, Scoggin C. (Somatogen Co.USA). Initial clinical experience with a rationally designed genetically engineered recombinant human hemoglobin. Artif Cells Blood Substit Immobil Biotechnol. 1994;22:457–65.

    Article  CAS  PubMed  Google Scholar 

  96. Shorr RG, Viau AT, Abuchowski A. Phase 1B safety evaluation of PEG hemoglobin as an adjuvant to radiation therapy in human cancer patients. Artif Cells Blood Substit Immobil Biotechnol. 1996;24(abstracts issue):407.

    Google Scholar 

  97. Simoni J, Simoni G, Lox CD, Prien SD, Shires GT. Modified hemoglobin solution with desired pharmacological properties does not activate nuclear transcription factor NF-kappa B in human vascular endothelial cells. Artif Cells Blood Substit Immobil Biotechnol. 1997;25:193–210.

    Article  CAS  PubMed  Google Scholar 

  98. Sims C, Seigne P, Menconi M, Monarca J, Barlow C, Pettit J, Puyana JC. Skeletal muscle acidosis correlates with the severity of blood volume loss during shock and resuscitation. J Trauma. 2001;51:1137–46.

    CAS  PubMed  Google Scholar 

  99. Tam SC, Blumenstein J, Wong JT. Dextran hemoglobin. Proc Natl Acad Sci USA. 1976;73:2128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Timm B, Elmer J. Enhancing the stability of Lumbricus terrestris Erythrocruorin (LtEc) for use as a blood substitute. In: Chang TMS, Bulow L, Jahr JS, Sakai H, Yang CM, editors. Nanobiotherapeutic based blood substitutes. Singapore: World Science Publisher; 2021.

    Google Scholar 

  101. Tronstad C, Pischke SE, Holhjem L, Tonnessen TI, Martinsen OG, Grimnes S. Early detection of cardiac ischemia using a conductometric PCO 2 sensor: real-time drift correction and parameterization. Physiol Meas. 2010;31:1241–55.

    Article  PubMed  Google Scholar 

  102. Tsuchida E, Sakai H, Horinouchi H, Kobayashi K. Hemoglobin Vesicles. Artif Cell Blood Substit Biotechnol. 2006;34:581–8.

    Google Scholar 

  103. Vandegriff KD, Malavalli A, Light WR. Development of a new HBOC for liver allograft preservation in combination with machine perfusion ̶ clearing the wait list. In: Chang TMS, Bulow L, Jahr JS, Sakai H, Yang CM, editors. Nanobiotherapeutic based blood substitutes. Singapore: World Science Publisher; 2021.

    Google Scholar 

  104. Vincent JL, Privalle CT, Singer M, Lorente JA, DeAngelo J. Multicenter randomized, placebo-controlled phase III study of pyridoxalated hemoglobin polyoxyethylene in distributive shock (PHOENIX)*. Crit Care Med. 2015;43(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  105. Walder JA, Zaugg RH, Walder RY, Steele JM, Klotz IM, IM. Diaspirins that cross-link alpha chains of hemoglobin: bis(3,5-dibromosalicyl) succinate and bis(3,5-dibormosalicyl)fumarate. Biochemistry. 1979;18:4265–70.

    Article  CAS  PubMed  Google Scholar 

  106. Wang Y, Chang TMS. A polymer-lipid membrane artificial cell nanocarrier containing enzyme-oxygen biotherapeutic inhibits the growth of B16F10 melanoma in 3D culture and in a mouse model. Artif Cells Nanomed Biotechnol. 2021;49(1):461–70.

    Article  CAS  PubMed  Google Scholar 

  107. Wang Y, Huang Y. “Hemosome” by protein−polymer conjugate assembly as oxygen carrier. Abstract. 2017 International Symposium on Blood Substitutes. www.artcell.mcgill.ca. 2017.

  108. Wang Y, et al. Polymerized human placenta hemoglobin (PolyPHb) attenuates myocardial infarction injury in rats. Artif Cells Blood Substit Immobil Biotechnol. 2012;40(1–2):7–13.

    Article  PubMed  CAS  Google Scholar 

  109. Wei G, Bian YZ, Chang TMS. PLA-PEG nanoencapsulated nano artificial red blood cells that act as O2 and CO2 carrier with enhanced antioxidant activity: polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase. Artif Cells Nanomed Biotechnol. 2013;41(4):232–9.

    Google Scholar 

  110. Weiskopf RB. Hemoglobin-based oxygen carriers: disclosed history and the way ahead: the relativity of safety. Anesth Analg. 2014;119:758–60.

    Article  PubMed  Google Scholar 

  111. Wetzler M, Sanford BL, Kurtzberg J, DeOliveira D, Frankel SR, Powell BL, Kolitz JE, Bloomfield CD, Larson RA. Effective asparagine depletion with pegylated asparaginase results in improved outcomes in adult acute lymphoblastic leukemia: cancer and leukemia group B study 9511. Blood. 2007;109(10):4164–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Winslow RM, editor. Blood substitutes. Amsterdam: Academic; 2006.

    Google Scholar 

  113. Wollocko H, Harrington J, Jahr JS, Steier K, Wollocko J. OxyVita® Hb: a step forward in delivering oxygen carrying capacity for therapeutic applications. In: Chang TMS, Bulow L, Jahr JS, Sakai H, Yang CM, editors. Nanobiotherapeutic based blood substitutes. World Science Publisher; 2021.

    Google Scholar 

  114. Wong JT. Rightshifted dextran-hemoglobin as blood substitute. Biomater Artif Cells Artif Organs. 1988;16:237–45.

    Article  CAS  PubMed  Google Scholar 

  115. Wong N, Chang TMS. Polyhemoglobin-fibrinogen: a novel blood substitutes with platelet-like activity for extreme hemodilution. Artif Cells Blood Substit Immobil Biotechnol. 2007;35:481–9.

    Article  CAS  PubMed  Google Scholar 

  116. Wong BL, Kwok SY. Method for the preparation of a heat stable oxygen carriercontaining pharmaceutical composition, United States Patent 7,932,356, April 26, 2011.

    Google Scholar 

  117. Yang CM, Liu J, Zhao TM, editors. Chinese transfusion medicine. Beijing: People’s Medical Publishing House; 2021, 937 pages

    Google Scholar 

  118. Yu BL, Chang TMS. In vitro and in vivo effects of polyhemoglobintyrosinase on murine B16F10 melanoma. Melanoma Res J. 2004;14:197–202.

    Google Scholar 

  119. Yu B, Zapol WM. Hemoglobin-based oxygen carriers and inhaled nitric oxide. In: Chang TMS, Bulow L, Jahr JS, Sakai H, Yang CM, editors. Nanobiotherapeutic based blood substitutes. Singapore: World Science Publisher; 2021.

    Google Scholar 

  120. Yu BL, Shahid M, Egorina EM, Sovershaev MA, Raher MJ, Lei C, Wu MX, Bloch KD, Zapol WM. Endothelial dysfunction enhances vasoconstriction due to scavenging of nitric oxide by a hemoglobin-based oxygen carrier. Anesthesiology. 2010;112:586–94.

    Google Scholar 

  121. Zal F. Use of HEMO2life - an innovative oxygen carrier in organ transplantation. Abstract, 2017 International Symposium on Blood Substitutes. www.artcell.mcgill.ca. 2017.

  122. Zhoa L. Strategies to decrease the oxidative toxicity of hemoglobin-based oxygen carriers. In: Chang TMS, Bulow L, Jahr JS, Sakai H, Yang CM, editors. Nanobiotherapeutic based blood substitutes. Singapore: World Science Publisher; 2021.

    Google Scholar 

  123. Zhu YJW, Chen C. Glutaraldehyde polymerized porcine haemoglobin. In: Chang TMS, editor. Selected topics in nanomedicine. Singapore: World Science Publisher/Imperial College Press; 2013.

    Google Scholar 

  124. Zhu H, Yan K, Dang X, Huang H, Chen E, Chen B, Chao L, Chang TMS, Dai P, Chen C. Immune safety evaluation of polymerized porcine hemoglobin (pPolyHb) - a potential red blood cell substitutes. In: Chang TMS, Bulow L, Jahr JS, Sakai H, Yang CM, editors. Nanobiotherapeutic based blood substitutes. Singapore: World Science Publisher; 2021.

    Google Scholar 

  125. Zuck TF. Difficulties in demonstrating efficacy of blood substitutes. Artif Cells Blood Substit Immobil Biotechnol. (Guest editor: R.Winslow). 1994;22:945–54.

    Google Scholar 

Download references

Acknowledgements

Material from this chapter comes from some of the text and figures of this author’s papers with copy right permission

Material from this chapter comes from some of the text and figures of this author’s papers published in Artificial Cells, Nanomedicine and Biotechnology (Taylor & Francis Publisher) with copy right permission

The author’s research in this area has been supported by the Canadian Institutes of Health Research and a partnership grant of the Canada Blood Service/Canadian Institutes of Health Research. Both are nonprofit organizations of the government of Canada. The opinions in this paper are those of the author and not necessary those of the granting agencies or the government of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ming Swi Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chang, T.M.S. (2022). A Brief History of the Development of Nanobiotechnology-Based Blood Substitutes. In: Liu, H., Kaye, A.D., Jahr, J.S. (eds) Blood Substitutes and Oxygen Biotherapeutics. Springer, Cham. https://doi.org/10.1007/978-3-030-95975-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95975-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95974-6

  • Online ISBN: 978-3-030-95975-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics