Skip to main content

South American Sauropodomorphs: What Their Bone Histology Has Revealed to Us

  • Chapter
  • First Online:
South American Sauropodomorph Dinosaurs

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

Given that bone microstructure is a very important source of paleobiological information, several paleohistological studies have been conducted on sauropodomorph dinosaurs, possibly making this clade the most studied histologically. Despite these paleohistological studies on sauropodomorph dinosaurs from South America are relatively scarce in comparison with other regions of the world, significant progress on this matter (i.e. paleohistology of South American sauropodomorphs) has been made during the last decade. Following an order from rather specific to more generalized issues, the most important advances are related to the origin of particular skeletal elements (i.e. osteoderms, sacral supraspinous ossifications and extremely elongated cervical ribs), the growth patterns of basal sauropodomorphs and the variation on sauropod growth dynamics and its relationship with gigantism. Regarding the origin of osteoderms and extremely elongated cervical ribs, these structures have been formed by metaplastic ossification of dermal and tendinous tissues, respectively. Their histological characterization has been helpful to discover that the alleged osteoderms of Agustinia ligabuei were actually dorsal and cervical ribs. The long bone histology of basal sauropodomorphs has revealed that the cyclical growth pattern assumed for this group actually showed some degree of variation. Finally, a clade of basal sauropods (i.e. lessemsaurids) was characterized by a cyclical growth pattern, not previously reported for other sauropods, combined with episodes of highly accelerated growth rates. The gigantic body sizes obtained by lessemsaurids were therefore reached through a growth strategy different from that developed by eusauropods (i.e. rapid and continuous growth).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apaldetti C, Martínez RN, Cerda IA, Pol D, Alcober O (2018) An early trend towards gigantism in Triassic sauropodomorph dinosaurs. Nat Ecol Evol 2:1227–1232. https://doi.org/10.1038/s41559-018-0599-y

    Article  Google Scholar 

  • Aureliano T, Ghilardi AM, Silva-Junior JCG, Martinelli AG, Ribeiro LCB, Marinho T, Fernandes MA, Ricardi-Branco F, Sander PM (2020) Influence of taphonomy on histological evidence for vertebral pneumaticity in an Upper Cretaceous titanosaur from South America. Cretac Res 108:104337. https://doi.org/10.1016/j.cretres.2019.104337

    Article  Google Scholar 

  • Barbosa FHS, Costa Pereira PVLG, Bergqvist LP, Rothschild BM (2016) Multiple neoplasms in a single sauropod dinosaur from the upper Cretaceous of Brazil. Cretac Res 62:13–17. https://doi.org/10.1016/j.cretres.2016.01.010

    Article  Google Scholar 

  • Bertin TJC, Thivichon-Prince B, LeBlanc ARH, Caldwell MW, Viriot L (2018) Current perspectives on tooth Implantation, attachment, and replacement in Amniota. Front Physiol 9:1630. https://doi.org/10.3389/fphys.2018.01630

    Article  Google Scholar 

  • Bellardini F, Cerda IA (2017) New histological data sheds light on the nature of the “dermal armor” of the enigmatic sauropod dinosaur Agustinia ligabuei Bonaparte, 1999. Sci Nat (naturwissenschaften) 104:1. https://doi.org/10.1007/s00114-016-1423-7

    Article  Google Scholar 

  • Bonaparte JF (1996) Cretaceous tetrapods of Argentina. Münch Geowiss Abh A 30:73–130

    Google Scholar 

  • Bonaparte JF (1999) An armoured sauropod from the Aptian of northern Patagonia, Argentina. Natl Mus Nat Sci Monogr 15:1–12

    Google Scholar 

  • Bonaparte JF, Vince M (1979) El hallazgo del primer nido de Dinosaurios Triásicos (Saurischia, Prosauropoda), Triásico Superior de Patagonia, Argentina. Ameghiniana 16:173–182

    Google Scholar 

  • Bonucci E, Gherardi G (1975) Histochemical and electron microscope investigations on medullary bone. Cell Tissue Res 163:81–97

    Article  Google Scholar 

  • Bramble K, LeBlanc ARH, Lamoureux DO, Wosik M, Currie PJ (2017) Histological evidence for a dynamic dental battery in hadrosaurid dinosaurs. Sci Rep 7:15787. https://doi.org/10.1038/s41598-017-16056-3

    Article  Google Scholar 

  • Britt BB (1997) Postcranial pneumaticity. In: Currie PD, Padian K (eds) The encyclopedia of dinosaurs. New York Academic Press, New York, pp 590–593

    Google Scholar 

  • Buchwitz M, Witzmann F, Voigt S. Golubev V (2012) Osteoderm microstructure indicates the presence of a crocodylian-like trunk bracing system in a group of armoured basal tetrapods. Acta Zool 93:260–280

    Google Scholar 

  • Campos D, Kellner AWA (1999) On some sauropod (Titanosauridae) pelves from the continental Cretaceous of Brazil. Natl Mus Nat Sci Monogr 15:143–166

    Google Scholar 

  • Carballido JL, Pol D, Cerda IA, Salgado L (2011) The osteology of Chubutisaurus insignis del Corro, 1975 (Dinosauria, Neosauropoda) from the “middle” Cretaceous of Central Patagonia, Argentina. J Vertebr Paleontol 31:93–110

    Article  Google Scholar 

  • Carballido JL, Pol D, Otero A, Cerda IA, Salgado L, Garrido AC, Ramezani J, Cúneo NR, Krause MJ (2017) An assemblage of giant dinosaurs from the mid-Cretaceous of Patagonia. Proc R Soc B 284:20171219. https://doi.org/10.1098/rspb.2017.1219

  • Case TJ (1978) On the evolution and adaptive significance of postnatal growth rates in the terrestrial vertebrates. Q Rev Biol 53:243–282

    Article  Google Scholar 

  • Cerda IA (2009) Consideraciones sobre la histogénesis de las costillas cervicales en los dinosaurios saurópodos. Ameghiniana 46:193–198

    Google Scholar 

  • Cerda IA, Desojo JB (2011) Dermal armour histology of Aetosaurinae aetosaurs (Archosauria: Pseudosuchia) from the Upper Triassic of Argentina and Brazil. Lethaia 44:417–428

    Article  Google Scholar 

  • Cerda IA, Powell JE (2010) Dermal armor histology of Saltasaurus loricatus, an Upper Cretaceous sauropod dinosaur from Northwest Argentina. Acta Palaeontol Pol 55:389–398

    Article  Google Scholar 

  • Cerda IA, Salgado L, Powell JE (2012) Extreme postcranial pneumaticity in sauropod dinosaurs from South America. Paläontol Z 86:441–449

    Article  Google Scholar 

  • Cerda IA, Chinsamy A, Pol D (2014a) Unusual endosteally formed bone tissue in a Patagonian basal sauropodomorph dinosaur. Anat Rec 297:1385–1391

    Article  Google Scholar 

  • Cerda IA, Pol D, Chinsamy A (2014b) Osteohistological insight into the early stages of growth in Mussaurus patagonicus (Dinosauria, Sauropodomorpha). Hist Biol 26:110–121

    Article  Google Scholar 

  • Cerda IA, García RA, Powell JE, López O (2015a) Morphology, microanatomy and histology of titanosaur (Dinosauria, Sauropoda) osteoderms from the Upper Cretaceous of Patagonia. J Vertebr Paleontol 35:1. https://doi.org/10.1080/02724634.2014.905791

    Article  Google Scholar 

  • Cerda IA, Casal G, Martínez R, Ibiricu L (2015b) Histological evidence for a supraspinous ligament in sauropod dinosaur. R Soc Open Sci 2:150369. https://doi.org/10.1098/rsos.150369

    Article  Google Scholar 

  • Cerda IA, Chinsamy A, Pol D, Apaldetti C, Otero A, Powell JE, Martínez RN (2017) Novel insight into the origin of the growth dynamics of sauropod dinosaurs. PLoS ONE 12:e0179707. https://doi.org/10.1371/journal.pone.0179707

    Article  Google Scholar 

  • Cerda IA, Desojo JB, Scheyer TM (2018) Novel data on aetosaur (Archosauria, Pseudosuchia) osteoderm microanatomy and histology: palaeobiological implications. Palaeontology 61:721–745

    Article  Google Scholar 

  • Cerda IA, Gasparini Z, Coria RA, Salgado L, Reguero M, Ponce D, Gonzalez R, Jannello JM, Moly J (2019) Paleobiological inferences for the Antarctic dinosaur Antarctopelta oliveroi (Ornithischia: Ankylosauria) based on bone histology of the holotype. Cretac Res 103:104171. https://doi.org/10.1016/j.cretres.2019.07.001

    Article  Google Scholar 

  • Cerda IA, Pol D, Otero A. Chinsamy A (in press) Palaeobiology of the early sauropodomorph Mussaurus patagonicus inferred from its long bone histology. Palaeontology

    Google Scholar 

  • Chinsamy A (1993) Bone histology and growth trajectory of the prosauropod dinosaur Massospondylus carinatus (Owen). Mod Geol 18:319–329

    Google Scholar 

  • Chinsamy-Turan A (2005) The microstructure of dinosaur bone. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Chinsamy A, Cerda IA, Powell JE (2016) Unusual bone tissue in an armored sauropod dinosaur: reproductive or pathological? Sci Rep 6:24858. https://doi.org/10.1038/srep24858

  • Chen J, LeBlanc ARH, Jin L, Huang T, Reisz RR (2018) Tooth development, histology, and enamel microstructure in Changchunsaurus parvus: implications for dental evolution in ornithopod dinosaurs. PLoS ONE 13:e0205206. https://doi.org/10.1371/journal.pone.0205206

    Article  Google Scholar 

  • Company J (2011) Bone histology of the titanosaur Lirainosaurus astibiae (Dinosauria: Sauropoda) from the Latest Cretaceous of Spain. Naturwissenschaften 98:67–78

    Article  Google Scholar 

  • Currey JD (1962) The histology of the bone of a prosauropod dinosaur. Palaeontology 5:238–246

    Google Scholar 

  • Curry KA (1999) Ontogenetic histology of Apatosaurus (Dinosauria: Sauropoda): new insights on growth rates and longevity. J Vert Paleontol 19:654–665

    Article  Google Scholar 

  • Curry Rogers K, D’Emic MD, Rogers R, Vickaryous M, Cagan A (2011) Sauropod dinosaur osteoderms from the Late Cretaceous of Madagascar. Nat Commun 564. https://doi.org/10.1038/ncomms1578

  • Curry Rogers K, Kulik Z (2018) Osteohistology of Rapetosaurus krausei (Sauropoda: Titanosauria) from the Upper Cretaceous of Madagascar. J Vertebr Paleontol 38:1–24. https://doi.org/10.1080/02724634.2018.1493689

    Article  Google Scholar 

  • Díez Díaz V, Garcia G, Pereda-Suberbiola X, Jentgen-Ceschino B, Stein K, Godefroit P, Valentin X (2018) The titanosaurian dinosaur Atsinganosaurus velauciensis (Sauropoda) from the Upper Cretaceous of southern France: New material, phylogenetic affinities, and palaeobiogeographical implications. Cretac Res 91:429–456

    Article  Google Scholar 

  • Dodson P, Krause DW, Forster CA, Sampson SD, Ravoavy F (1998) Titanosaurid (Sauropoda) osteoderms from the Late Cretaceous of Madagascar. J Vertebr Paleontol 18:563–568

    Article  Google Scholar 

  • D’Emic MD, Wilson JA, Chatterjee S (2009) The titanosaur (Dinosauria: Sauropoda) osteoderm record: review and first definitive specimen from India. J Vertebr Paleontol 29:165–177. https://doi.org/10.1671/039.029.0131

    Article  Google Scholar 

  • D’Emic MD, Whitlock JA, Smith KM, Fisher DC, Wilson JA (2013) Evolution of high tooth replacement rates in sauropod dinosaurs. PLoS ONE 8:e69235. https://doi.org/10.1371/journal.pone.0069235

    Article  Google Scholar 

  • Erickson GM (2014) On dinosaur growth. Annu Rev Earth Pl Sc 42:675–697

    Article  Google Scholar 

  • Erickson GM, Brochu CM (1999) How the ‘terror crocodile’ grew so big. Nature 398:205–206

    Article  Google Scholar 

  • Erickson GM, de Ricqlès A, de Buffrénil V, Molnar RE, Bayless MK (2003) Vermiform bones and the evolution of gigantism in Megalania—how a reptilian fox became a lion. J Vertebr Paleontol 23:966–970

    Article  Google Scholar 

  • Erickson GM, Sidebottom MA, Kay DI, Turner KT, Ip N, Norell MA, Sawyer WG, Krick BA (2015) Wear biomechanics in the slicing dentition of the giant horned dinosaur Triceratops. Sci Adv 1:e1500055. https://doi.org/10.1126/sciadv.1500055

    Article  Google Scholar 

  • Fong RKM, LeBlanc ARH, BermanDS RRR (2016) Dental histology of Coelophysis bauri and the evolution of tooth attachment tissues in early dinosaurs: dinosaur dental histology. J Morphol 277:916–924. https://doi.org/10.1002/jmor.20545

    Article  Google Scholar 

  • Francillon−Vieillot H, Buffrénil V de, Castanet J, Geraudie J, Meunier FJ, Sire JY, Zylberberg L, Ricqlès A de (1990) Microstructure and mineralization of vertebrate skeletal tissues. In: Carter JG (ed) Skeletal Biomineralization: patterns, processes and evolutionary trends. Van Nostrand Reinhold, New York, pp 471–548

    Google Scholar 

  • Fronimos JA (2021) Morphology and neurovascular anatomy of a titanosaurs (Dinosauria, Sauropoda) osteoderm from the upper Cretaceous of Big Bend National Park, Texas. Cretac Res 120:104670. https://doi.org/10.1016/j.cretres.2020.104670

    Article  Google Scholar 

  • Gallina PA (2012) Histología del titanosaurio Bonitasaura salgadoi (Dinosauria: Sauropoda) del Cretácico superior de Patagonia. Ameghiniana 49:289–302

    Article  Google Scholar 

  • Gallina PA, Apesteguía S (2015). Postcranial anatomy of Bonitasaura salgadoi (Sauropoda, Titanosauria) from the Late Cretaceous of Patagonia. J Vertebr Paleontol 35:1e22. https://doi.org/10.1080/02724634.2014.924957

  • García G, Amico S, Fournier F, Thouand E, Valentín X (2010) A new titanosaur genus (Dinosauria, Sauropoda) from the Late Cretaceous of southern France and its paleobiogeographic implications. Bull Soc Geol Fr 181:269–277. https://doi.org/10.2113/gssgfbull.181.3.269

    Article  Google Scholar 

  • García RA, Cerda IA (2010a) Dentición de los titanosaurios del Cretácico Superior de la provincia de Río Negro, Argentina: aspectos morfológicos, reemplazo e inserción. Ameghiniana 47:45–60

    Article  Google Scholar 

  • García RA, Cerda IA (2010b) Dentition and histology in titanosaurian dinosaur embryos. Palaeontology 53:335–346

    Article  Google Scholar 

  • García RA, Salgado L, Fernández MS, Cerda IA, Paulina Carabajal A, Otero A, Coria RA, Fiorelli LE (2015) Paleobiology of titanosaurs: reproduction, development, histology, pneumaticity, locomotion and neuroanatomy from the South American fossil record. Ameghiniana 52:29–68

    Article  Google Scholar 

  • García RA, Cerda IA, Heller M, Rothschild BM, Zurriaguz VL (2017) The first evidence of osteomyelitis in adult sauropod (Dinosauria: Saurischia). Lethaia 50:227–236. https://doi.org/10.1111/let.12189

    Article  Google Scholar 

  • García RA, Zurriaguz V (2016) Histology of teeth and tooth attachment in titanosaurs (Dinosauria; Sauropoda). Cretac Res 57:248–256. https://doi.org/10.1016/j.cretres.2015.09.006

    Article  Google Scholar 

  • Ghilardi AM, Aureliano T, Duque RRC, Fernandes MA, Barreto AMF, Chinsamy A (2016) A new titanosaur from the Lower Cretaceous of Brazil. Cretac Res 67:16–24. https://doi.org/10.1016/j.cretres.2016.07.001

    Article  Google Scholar 

  • Giménez O, Salgado L, Cerda IA (2008) Osteohistología de la viga supraneural de Epachthosaurus sciuttoi (Cretácico Tardío del Chubut). Natur Patag 4:1–14

    Google Scholar 

  • González R, Cerda IA, Filippi LS, Salgado L (2020) Early growth dynamics of titanosaur sauropods inferred from bone histology. Palaeogeogr Palaeoclimatol Palaeoecol 537:109404. https://doi.org/10.1016/j.palaeo.2019.109404

    Article  Google Scholar 

  • González R, Gallina PA, Cerda IA (2017) Multiple paleopathologies in the dinosaur Bonitasaura salgadoi (Sauropoda: Titanosauria) from the upper Cretaceous of Patagonia, Argentina. Cretac Res 79:159–170

    Article  Google Scholar 

  • Griebeler EM, Klein N, Sander PM (2013) Aging, maturation and growth of sauropodomorph dinosaurs as deduced from growth curves using long bone histological data: an assessment of methodological constraints and solutions. PLoS ONE 8(6):e67012. https://doi.org/10.1371/journal.pone.0067012

    Article  Google Scholar 

  • Haines RW, Mohuiddin A (1968) Metaplastic bone. J Anat 103:527–538

    Google Scholar 

  • Hill RV (2005) Integration of morphological data sets for phylogenetic analysis of Amniota: the importance of integumentary characters and increased taxonomic sampling. Syst Biol 54:530–547

    Article  Google Scholar 

  • Hill RV (2006) Comparative anatomy and histology of xenarthran osteoderms. J Morphol 267:1441–1460

    Article  Google Scholar 

  • Hofmann R, Stein K, Sander PM (2014) Constraints on the lamina density of laminar bone architecture of large-bodied dinosaurs and mammals. Acta Palaeontol Pol 59:287–294

    Google Scholar 

  • Horner JR, Padian K, de Ricqlès A (2001) Comparative osteohistology of some embryonic and perinatal archosaurs: developmental and behavioral implications. Paleobiology 27:39–58

    Article  Google Scholar 

  • Huene F von (1929) Los saurisquios y ornitisquios del Cretáceo Argentino. Anales del Museo de La Plata (Series 2) 3:1–196

    Google Scholar 

  • Hutton JM (1986) Age determination of living Nile crocodiles from the cortical stratification of bone. Copeia 2:332–341. https://doi.org/10.2307/1444994

  • Ibiricu LM, Casal GA, Martínez RD, Luna M, Svoboda EG, Cerda IA (2017a) New materials of lithostrotian titanosaurs (Dinosauria: Sauropoda) from the late Cretaceous of central Patagonia. Cretac Res 72:1–15

    Google Scholar 

  • Ibiricu LM, Lamanna M, Martínez RD, Casal GA, Cerda IA, Martínez G, Salgado L (2017b) A novel form of postcranial skeletal pneumaticity in a sauropod dinosaur: implications for the paleobiology of Rebbachisauridae. Acta Palaeontol Pol 62:221–236

    Article  Google Scholar 

  • Janensch W (1947) Pneumatizitat bei Wirbeln von sauropoden und anderen saurischien. Palaeontographica 3:1–25

    Google Scholar 

  • Janensch W (1950) Die Wirbelsaule von Brachiosaurus brancai. Palaeontographica (Suppl. 7) 3:27–93

    Google Scholar 

  • Klein N, Sander PM (2007) Bone histology and growth of the prosauropod Plateosaurus engelhardti Meyer, 1837 from the Norian bonebeds of Trossingen (Germany) and Frick (Switzerland). Spec Pap Palaeontol 77:169–206

    Google Scholar 

  • Klein N, Sander PM (2008) Ontogenetic stages in the long bone histology of sauropod dinosaurs. Paleobiology 34:247–263

    Article  Google Scholar 

  • Klein N, Sander PM, Suteethorn V (2009) Bone histology and its implications for the life history and growth of the Early Cretaceous titanosaur Phuwiangosaurus sirindhornae. Geol Soc Spec Publ 315:217–228

    Article  Google Scholar 

  • Klein N, Sander PM, Stein K, Le Loeuff J, Carballido JL, Buffetaut E (2012a) Modified laminar bone in Ampelosaurus atacis and other titanosaurs (Sauropoda): Implications for Life history and physiology. PLoS ONE 7:e36907. https://doi.org/10.1371/journal.pone.0036907

    Article  Google Scholar 

  • Klein N, Christian A, Sander PM (2012b) Histology shows that elongated neck ribs in sauropod dinosaurs are ossified tendons. Biol Lett 8:1032–1035. https://doi.org/10.1098/rsbl.2012.0778

    Article  Google Scholar 

  • Krupandan E, Chinsamy A, Pol D (2018) The long bone histology of the sauropodomorph, Antetonitrus ingenipes. Anat Rec 301:1506–1518. https://doi.org/10.1002/ar.23898

    Article  Google Scholar 

  • Lacovara KJ, Lamanna MC, Ibiricu LM, Poole JC, Schroeter ER, Ullmann PV (2014) A gigantic, exceptionally complete titanosaurian sauropod dinosaur from Southern Patagonia Argentina. Sci Rep 4:6196. https://doi.org/10.1038/srep06196

    Article  Google Scholar 

  • Lambertz M, Bertozzo F, Sander PM (2018) Bone histological correlates for air sacs and their implications for understanding the origin of the dinosaurian respiratory system. Biol Lett 14:20170514. https://doi.org/10.1098/rsbl.2017.0514

    Article  Google Scholar 

  • LeBlanc ARH, Reisz RR, Evans DC, Bailleul AM (2016) Ontogeny reveals function and evolution of the hadrosaurid dinosaur dental battery. BMC Evol Biol 16:152. https://doi.org/10.1186/s12862-016-0721-1

    Article  Google Scholar 

  • LeBlanc ARH, Brink KS, Cullen TM, Reisz RR (2017) Evolutionary implications of tooth attachment versus tooth implantation: a case study using dinosaur, crocodilian, and mammal teeth. J Vertebr Paleontol 37:e1354006. https://doi.org/10.1080/02724634.2017.1354006

    Article  Google Scholar 

  • LeBlanc ARH, Reisz RR (2013) Periodontal ligament, cementum, and alveolar bone in the oldest herbivorous tetrapods, and their evolutionary significance. PLoS ONE 8:e74697. https://doi.org/10.1371/journal.pone.0074697

    Article  Google Scholar 

  • Le Loeuff J, Buffetaut E, Cavin L, Martin M, Martin V, Tong H (1994) An armoured titanosaurid sauropod from the Late Cretaceous of Southern France and the occurrence of osteoderms in the Titanosauridae. Gaia 10:155–159

    Google Scholar 

  • Main RP, de Ricqlès A, Horner JR, Padian K (2005) The evolution and function of thyreophoran dinosaur scutes: implications for plate function in stegosaurs. Paleobiology 31:291–314

    Article  Google Scholar 

  • Mannion PD, Upchurch P, Barnes RN, Mateus O (2013) Osteology of the late Jurassic Portuguese sauropod dinosaur Lusotitan atalaiensis (Macronaria) and the evolutionary history of basal titanosauriforms. Zool J Linnean Soc 168:98–206. https://doi.org/10.1111/zoj.12029

    Article  Google Scholar 

  • Marinho TS, Iori FV (2011) A large titanosaur (Dinosauria, Sauropoda) osteoderm with possible bite marks from Ibirá, São Paulo State, Brazil. In: Carvalho I de S, Srivastava NK, Strochschoen Jr O, Lana CC (Eds) Paleontologia: Cenários de Vida, Volume 4. Editora Interciência, Rio de Janeiro, pp 339–349

    Google Scholar 

  • Martínez RDF, Lamanna MC, Novas FE, Ridgely RC, Casal GA, Martínez JE, Vita JR, Witmer LM (2016) A basal lithostrotian titanosaur (Dinosauria: Sauropoda) with a complete skull: implications for the evolution and paleobiology of Titanosauria. PLoS ONE 11:e0151661. https://doi.org/10.1371/journal.pone.0151661

    Article  Google Scholar 

  • McPhee BW, Benson RBJ, Botha Brink J, Bordy EM, Choiniere JN (2018) A giant dinosaur from the Earliest Jurassic of South Africa and the transition to quadrupedality in early sauropodomorphs. Curr Biol 28:3143-3151.e7. https://doi.org/10.1016/j.cub.2018.07.063

    Article  Google Scholar 

  • Moss ML (1969) Comparative histology of dermal sclerifications in reptiles. Acta Anat 73:510–533. https://doi.org/10.1159/000143315

    Article  Google Scholar 

  • O’Connor PM (2006) Postcranial pneumaticity: an evaluation of soft-tissue influences on the postcranial skeleton and the reconstruction of pulmonary anatomy in archosaurs. J Morphol 267:1199–1226. https://doi.org/10.1002/jmor.10470

    Article  Google Scholar 

  • Otero A, Cuff A, Allen V, Summer-Rooney L, Hutchinson PD, J R, (2019) Ontogenetic changes in the body plan of the sauropodomorph dinosaur Mussaurus patagonicus reveal shifts of locomotor stance during growth. Sci Rep 9:7614. https://doi.org/10.1038/s41598-019-44037-1

    Article  Google Scholar 

  • Otero A, Pol D (in press) Ontogenetic changes in the postcranial skeleton of Mussaurus patagonicus (Dinosauria, Sauropodomorpha) and phylogenetic relationships of basal sauropodomorphs. Syst. Paleo

    Google Scholar 

  • Petermann H, Sander PM (2013) Histological evidence for muscle insertion in extant amniote femora: implications for muscle reconstruction in fossils. J Anat 222:419–436

    Article  Google Scholar 

  • Pol D, Garrido A, Cerda IA (2011) A new sauropodomorph dinosaur from the Early Jurassic of Patagonia and the origin and evolution of the sauropod-type sacrum. PlosOne 6:e14572. https://doi.org/10.1371/journal.pone.0014572

    Article  Google Scholar 

  • Pol D, Powell JE (2007) Skull anatomy of Mussaurus patagonicus (Dinosauria: Sauropodomorpha) from the Late Triassic of Patagonia. Hist Biol 19:125–144

    Article  Google Scholar 

  • Ponce D, Cerda IA, Desojo JB (2017) The osteoderm microstructure of Doswellia kaltenbachi, Vancleavea campi, and Chanaresuchus bonapartei and its implications for palaeobiology of stem archosaurs. Acta Palaeontol Pol 62:819–831

    Article  Google Scholar 

  • Powell JE (1980) Sobre la presencia de armadura dérmica en algunos dinosaurios titanosauridos. Acta Geol Lilloana 15:41–47

    Google Scholar 

  • Powell JE (1987) Morfología del esqueleto axial de los dinosaurios titanosauridos (Saurischia, Sauropoda) del Estado de Minas Gerais Brasil. An. X Congresso Brasileiro Paleontol 10:155–159

    Google Scholar 

  • Powell JE (2003) Revision of South American titanosaurid dinosaurs: palaeobiological, palaeobiogeographical and phylogenetic aspects. Rec Queen Vic Mus 111:1–173

    Google Scholar 

  • Pretto FA, Veiga FH, Langer MC, Schultz CL (2016) A juvenile sauropodomorph tibia from the ‘Botucarai Hill’, Late Triassic of Southern Brazil. Rev Bras Paleontol 19:407–414

    Article  Google Scholar 

  • Prondvai E (2017) Medullary bone in fossils: function, evolution and significance in growth curve reconstructions of extinct vertebrates. J Evol Biol 30:440–460

    Article  Google Scholar 

  • Reid REH (1996) Bone histology of the Cleveland-Lloyd dinosaurs and of dinosaurs in general. Part I: introduction to bone tissues. Bringham Young Univ Geol Stud 41:25–72

    Google Scholar 

  • Reisz RR, LeBlanc ARH, Maddin HC, Dudgeon TW, Scott D, Huang T, Chen J, Chen C-M, Zhong S (2020) Early Jurassic dinosaur fetal dental development and its significance for the evolution of sauropod dentition. Nat Commun 11:2240. https://doi.org/10.1038/s41467-020-16045-7

    Article  Google Scholar 

  • de Ricqlès A, Pereda Suberbiola X, Gasparini Z, Olivero E (2001a) Histology of the dermal ossifications in an ankylosaurian dinosaur from the Late Cretaceous of Antartica. Asoc Paleontol Argentina, Public Esp 7:171–174

    Google Scholar 

  • de Ricqlès A, Mateus O, Antunes MT, Taquet T (2001b) Histomorphogenesis of embryos of Upper Jurassic from Lourinha (Portugal). C R Acad Sci Series IIA-Earth Planet Sci 332:647–656

    Google Scholar 

  • Rothschild BM (2009) Scientifically rigorous reptile and amphibian osseous pathology: lessons for forensic herpetology from comparative and paleopathology. Appl Herpetol 6:47–79. https://doi.org/10.1163/157075409X413842

    Article  Google Scholar 

  • Rothschild BM, Martin LD (2006) Skeletal impact of disease. New Mexico Museum of Natural History, Albuquerque

    Google Scholar 

  • Salgado L (2003) Considerations on the bony plates assigned to titanosaurs. Ameghiniana 40:441–456

    Google Scholar 

  • Salgado L, Carvalho IS (2008) Uberabatitan ribeiroi, a new titanosaurs from the Marília Formation (Buaru Group, Upper Cretaceus), Minas Gerais, Brazil. Palaeontology 51:881–901

    Article  Google Scholar 

  • Sanchez S, Tafforeau P, Ahlberg PE (2014) The humerus of Eusthenopteron: a puzzling organization presaging the establishment of tetrapod limb bone marrow. Proc R Soc B 281: 20140299. https://doi.org/10.1098/rspb.2014.0299

  • Sander PM (2000) Long bone histology of the Tendaguru sauropods: implications for growth and biology. Paleobiology 26:466–488

    Article  Google Scholar 

  • Sander PM, Klein N (2005) Developmental plasticity in the life history of a prosauropod dinosaur. Science 310:1800–1802

    Article  Google Scholar 

  • Sander PM, Klein N, Buffetaut E, Cuny G, Suteethorn V, Le Loeuff J (2004) Adaptive radiation in sauropod dinosaurs: bone histology indicates rapid evolution of giant body size through acceleration. Org Divers Evol 4:165–173

    Article  Google Scholar 

  • Sander PM, Klein N, Stein K, Wings O (2011) Sauropod bone histology and implications for sauropod biology. In: Klein N, Remes K, Gee CT, Sander PM (eds) Biology of the Sauropod dinosaurs: understanding the life of giants. Indiana University Press, Bloomington, pp 276–302

    Google Scholar 

  • Sander PM, Tückmantel C (2003) Bone lamina thickness, bone apposition rates, and age estimates in sauropod humeri and femora. Paläontol Z 76:161–172

    Article  Google Scholar 

  • Sanz JL, Buscalioni AD (1987) New evidence of armored dinosaurs in the upper Cretaceous of Spain. In: Currie PM, Koster EH (eds) 4th symposium of Mesozoic terrestrial ecosystems, Drumheller, Alberta, Short Papers. Royal Tyrrell Museum, Paleontology, Drumheller, Alberta, pp 199–204

    Google Scholar 

  • Scheyer TM, Sander PM (2004) Histology of ankylosaur osteoderms: implications for systematics and function. J Vertebr Paleontol 20:874–893

    Article  Google Scholar 

  • Scheyer TM, Sander PM (2007) Shell bone histology indicates terrestrial palaeoecology of basal turtles. Proc R Soc B 274:1885–1893

    Article  Google Scholar 

  • Scheyer TM, Sander PM (2009) Bone microstructures and mode of skeletogenesis in osteoderms of three pareiasaur taxa from the Permian of South Africa. J Evol Biol 22:1153–1162

    Article  Google Scholar 

  • Scheyer TM, Sander PM, Joyce WG, Böhme W, Witzel U (2007) A plywood structure in the shell of fossil and living soft-shelled turtles (Trionychidae) and its evolutionary implications. Org Divers Evol 7:136–144

    Article  Google Scholar 

  • Schraer H, Hunter SJ (1985) The development of medullary bone: a model for osteogenenesis. Comp Biochem Physiol 82:13–17

    Article  Google Scholar 

  • Schultz M (2003) Light microscopic analysis in skeletal paleopathology. In: Ortner DJ (ed) Identification of pathological conditions in human skeletal remains, 2nd edn. Academic Press, London, pp 73–109

    Chapter  Google Scholar 

  • Schwarz D, Frey ED, Meyer C (2007) Pneumaticity and soft tissue reconstructions in the neck of diplodocid and dicraeosaurid sauropods. Acta Palaeontol Pol 52:167–1188

    Google Scholar 

  • Sereno PC, Wilson JA, Witmer M, Whitlock JA, Maga A, Ide O, Rowe TA (2007) Structural extremes in a Cretaceous dinosaur. PLoS ONE 2:e1230. https://doi.org/10.1371/journal.pone.0001230

    Article  Google Scholar 

  • Sire J-Y, Donoghue PCJ, Vickaryous MK (2009) Origin and evolution of the integumentary skeleton in non-tetrapod vertebrates. J Anat 214:409–440

    Article  Google Scholar 

  • Stein K, Csiki Z, Curry Rogers K, Weishampel DB, Redelstorff R, Sander PM (2010) Small body size and extreme cortical bone remodeling indicate phyletic dwarfism in Magyarosaurus dacus (Sauropoda: Titanosauria). PNAS 107:9258–9263

    Article  Google Scholar 

  • Taylor TG, Moore JH (1953) Avian medullary bone. Nature 172:504–505

    Article  Google Scholar 

  • Tucker AD (1997) Validation of skeletochronology to determine age of freshwater crocodiles (Crocodylus johnstoni). Mar Freshw Res 48:343–351

    Article  Google Scholar 

  • Vickaryous MK, Hall BK (2008) Development of the dermal skeleton in Alligator mississippiensis (Archosauria, Crocodylia) with comments on the homology of osteoderms. J Morphol 269:398–422. https://doi.org/10.1002/jmor.10575

    Article  Google Scholar 

  • Vickaryous MK, Sire JY (2009) The integumentary skeleton of tetrapods: origin, evolution, and development. J Anat 214:441–464. https://doi.org/10.1111/j.1469-7580.2008.01043.x

    Article  Google Scholar 

  • Vidal D, Ortega F, Sanz JL (2014) Titanosaur osteoderms from the Upper Cretaceous of Lo Hueco (Spain) and their implications on the armor of Laurasian titanosaurs. PLoS ONE 9:e102488. https://doi.org/10.1371/journal.pone.0102488

    Article  Google Scholar 

  • Vidal D, Ortega F, Gascó F, Serrano-Martínez A, Sanz JL (2017) The internal anatomy of titanosaur osteoderms from the Upper Cretaceous of Spain is compatible with a role in oogenesis. Sci Rep 7:42035. https://doi.org/10.1038/srep42035

    Article  Google Scholar 

  • Wedel MJ (2003) Vertebral pneumaticity, air sacs, and the physiology of sauropod dinosaurs. Paleobiology 29:243–255. https://doi.org/10.1666/0094-8373(2003)029\0243:VPASAT[2.0.CO;2

    Google Scholar 

  • Wedel MJ (2005) Postcranial skeletal pneumaticity in sauropods and its implications for mass estimates. In: Wilson JA, Curry-Rogers K (eds) The Sauropods: evolution and paleobiology. University of California Press, Berkeley, pp 201–228

    Google Scholar 

  • Wedel MJ (2009) Evidence for bird-like air-sacs in saurischian dinosaurs. J Exp Zool A 311:611–628. https://doi.org/10.1002/jez.513

    Article  Google Scholar 

  • Wedel MJ, Cifelli RL, Sanders RK (2000) Osteology, paleobiology, and relationships of the sauropod dinosaur Sauroposeidon. Acta Palaeontol Pol 45:343–388

    Google Scholar 

  • Weishampel DB, Fastovsky DE, Watabe M, Varricchio D, Jackson F, Tsogtbaatar K, Barsbold R (2008) New oviraptorid embryos from Bugin-Tsav, Nemegt Formation (Upper Cretaceous), Mongolia with insights into their habitat and growth. J Vertebr Paleontol 28:1110–1119

    Article  Google Scholar 

  • Witzmann F, Soler-Gijón R (2008) The bone histology of osteoderms in temnospondyl amphibians and in the chroniosuchian Bystrowiella. Acta Zool 89:1–19

    Google Scholar 

  • Woodruff DC, Atwood NJ, Madill A (2016) The structural preservation of a titanosaurid (Dinosauria: Sauropoda) vertebral ligament. Cretac Res 60:253–266

    Article  Google Scholar 

  • Yates AM, Wedel MJ, Bonnan MF (2012) The early evolution of postcranial skeletal pneumaticity in sauropodomorph dinosaurs. Acta Palaeontol Pol 57:85–100

    Article  Google Scholar 

  • Young CC, Zhao X-J (1972) Mamenchissaurus hochuanensis sp. nov. Inst Vert Paleontol Paleoanthropol Monogr 8:1–30

    Google Scholar 

  • Zylberberg L, Castanet J (1985) New data on the structure and growth of the osteoderms in the reptile Anguis fragilis L. (Anguidae, Squamata). J Morphol 186:327–342

    Article  Google Scholar 

  • Zurriaguz V (2017) New record of titanosaurian (Dinosauria: Sauropodomorpha) osteoderms from the Upper Cretaceous of North Patagonia. Cretac Res 74:175–180. https://doi.org/10.1016/j.cretres.2017.02.015

    Article  Google Scholar 

  • Zurriaguz V, Cerda IA (2017) Caudal pneumaticity in derived titanosaurs (Dinosauria: Sauropoda). Cretac Res 73:14–24

    Article  Google Scholar 

Download references

Acknowledgements

I would like to express my sincere gratitude to the editors for their invitation to participate in this book. Several of the contributions reviewed here have been possible because of the curators of many institutions of Argentina, who always understood the importance of paleohistological studies and have provided permission for sampling specimens under their care. I’m also grateful to my dear colleagues, who have entrusted me to carry on several projects focused on sauropodomorph histology. Pictures shown in Fig. 2 f–h courtesy of Flavio Bellardini. I want to dedicate this work to Leonardo Salgado, my former advisor, who introduced me to the wonderful field of paleohistology. Sci-hub library and Wikipaleo group shared valuable publications for this research. Part of my research was developed with the financial support of Agencia Nacional de Promoción Científica y Tecnológica (PICT-2011-1181; 2015-1021). Jennifer Botha and Leonardo Salgado are kindly acknowledged for their comments on an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cerda, I.A. (2022). South American Sauropodomorphs: What Their Bone Histology Has Revealed to Us. In: Otero, A., Carballido, J.L., Pol, D. (eds) South American Sauropodomorph Dinosaurs. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-95959-3_13

Download citation

Publish with us

Policies and ethics