Skip to main content

An Introduction to Biogeochemistry of the Critical Zone

  • Chapter
  • First Online:
Biogeochemistry of the Critical Zone

Abstract

The scientific discipline of biogeochemistry is inherently interdisciplinary. The name alone evokes principles across the physical and biological sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aciego SM, Riebe CS, Hart SC, Blakowski MA, Carey CJ, Aarons SM et al (2017) Dust outpaces bedrock in nutrient supply to montane forest ecosystems. Nat Commun 8:1–10

    Article  Google Scholar 

  • Anderson SP, von Blanckenburg F, White AF (2007) Physical and chemical controls on the critical zone. Elements 3:315–319

    Article  Google Scholar 

  • Anderson SP, Hinckley EL, Kelly P, Langston A (2014) Variation in critical zone processes and architecture across slope aspects. Proc Earth Planetary Sci 10:28–33

    Article  Google Scholar 

  • Arora B, Briggs MA, Zarnetske J, Stegen J, Gomez-Velez JD, Dwivedi D et al (2022) Hot spots and hot moments in the critical zone: identification of and incorporation into reactive transport models. In: Wymore AS, Yang WH, Silver WL, McDowell WH, Chorover J (eds) Biogeochemistry of the critical zone. Springer-Nature, Berlin

    Google Scholar 

  • Bianchi TS (2020) The evolution of biogeochemistry: revisited. Biogeochemistry 154:1–41

    Google Scholar 

  • Blair N, Hayes JM, Grimley D, Anders AM (2022) Eroded critical zone carbon and where to find it: examples from the IML CZO. In: Wymore AS, Yang WH, Silver WL, McDowell WH, Chorover J (eds) Biogeochemistry of the critical zone. Springer-Nature, Berlin

    Google Scholar 

  • Brantley SL, Goldhaber MB, Ragnarsdottir KV (2007) Crossing disciplines and scales to understand the critical zone. Elements 3:307–314

    Article  Google Scholar 

  • Brantley SL, Eissenstat DM, Marshall JA, Godsey SE, Balogh-Brunstad Z, Karwan DL et al (2017) Reviews and syntheses: on the roles trees play in building and plumbing the critical zone. Biogeosciences 14:5115–5142

    Article  Google Scholar 

  • Brocard GY, Willenbring JK, Miller TE, Scatena FN (2016) Relict landscape resistance to dissection by upstream migrating knickpoints. J Geophys Res Earth Surf 121:1182–1203

    Article  Google Scholar 

  • Chadwick OA, Chorover J, Chadwick KD, Bateman JB, Slessarev EW, Kramer M et al (2022) Constraints of climate and age on soil development in Hawai‘i. In: Wymore AS, Yang WH, Silver WL, McDowell WH, Chorover J (eds) Biogeochemistry of the critical zone. Springer-Nature, Berlin

    Google Scholar 

  • Chorover J, Kretzschmar R, Garcia-Pichel F, Sparks DL (2007) Soil biogeochemical processes within the critical zone. Elements 3:321–326

    Article  Google Scholar 

  • Dontsova K, Balogh-Brunstad Z, Chorover J (2020) Plants as drivers of rock weathering. In: Dontsova K, Balogh-Brunstad Z, Le Roux (eds) Biogeochemical cycles

    Google Scholar 

  • Eilers KG, Debenport S, Anderson SP, Fierer N (2012) Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol Biochem 50:58–65

    Article  Google Scholar 

  • Fan Y, Grant G, Anderson SP (2019) Water within, moving through, and shaping the Earth’s surface: introducing a special issue on water in the critical zone. Hydrol Process 33:3146–3151

    Article  Google Scholar 

  • Fazekas HM, McDowell WH, Shanley JB, Wymore AS (2021) Climate variability drives streams along a transporter-transformer continuum. Geophysical Research Letters. https://doi.org/10.1029/2021GL094050

  • Foroughi M, Sutter LA, Richter D, Markewitz D (2022) Hillslope position and land-use history influence P distribution in the critical zone. In: Wymore AS, Yang WH, Silver WL, McDowell WH, Chorover J (eds) Biogeochemistry of the critical zone. Springer-Nature, Berlin

    Google Scholar 

  • Goulden ML, Bales RC (2019) California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat Geosci 12:632–637

    Article  Google Scholar 

  • Heindel RC, Putman AL, Murphy SF, Repert DA, Hinckley EL (2020) Atmospheric dust deposition varies by season and elevation in the Colorado Front Range, USA. J Geophys Res: Earth Surf 125: e2019JF005436

    Google Scholar 

  • Hinckley ELS, Barnes RT, Anderson SP, Williams MW, Bernasconi SM (2014) Nitrogen retention and transport differ by hillslope aspect at the rain-snow transition of the Colorado Front Range. J Geophys Res Biogeosci 119:1281–1296

    Article  Google Scholar 

  • Holbrook WS, Marcon V, Bacon AR, Brantley SL, Carr BJ, Flinchum BA et al (2019) Links between physical and chemical weathering inferred from a 65-m-deep borehole through Earth’s critical zone. Sci Rep 9:1–11

    Article  Google Scholar 

  • Horton JL, Hart SC (1998) Hydraulic lift: a potentially important ecosystem process. Tree 13:232–235

    Google Scholar 

  • Hynek S, Comas X, Brantley SL (2017) The effect of fractures on weathering of igneous and volcaniclastic sedimentary rocks in the Puerto Rican tropical rain forest. Proc Earth Planetary Sci 17:972–975

    Article  Google Scholar 

  • Ibarra DE, Caves JK, Moon S, Thomas DL, Hartmann J, Chamberlain CP, Maher K (2016) Differential weathering of basaltic and granitic catchments from concentration-discharge relationships. Geochim Cosmochim Acta 190:265–293

    Article  Google Scholar 

  • Jenny H (1941) Factors of soil formation—a system of quantitative pedology. McGraw-Hall, New York, 281pp

    Google Scholar 

  • Kumar P, Phong VVL, Papanicolaou ANT, Rhoads BL, Anders AM, Stumpf A et al (2018) Critical transition in critical zone of intensively managed landscapes. Anthropocene 22:10–19

    Article  Google Scholar 

  • Kusel K, Totsche KU, Trumbore SE, Lehmann R, Steinhouser C, Herrmann M (2016) How deep can surface signals be traced in the critical zone? Merging biodiversity with biogeochemistry research in a central German Muschelkalk landscape. Front Earth Sci 4:32

    Article  Google Scholar 

  • Lin Y, Bhattacharyya A, Campbell AN, Nico PS, Pett-Ridge J, Silver WL (2018) Phosphorus fractionation responds to dynamic redox conditions in a humid tropical forest soil. J Geophys Res Biogeosci 123:3016–3027

    Article  Google Scholar 

  • Maher K, Chamberlain CP (2014) Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science 343:1502–1504

    Article  Google Scholar 

  • McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM et al (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312

    Article  Google Scholar 

  • McClintock MA, McDowell WH, González G, Schulz M, Pett-Ridge JC (2019) African dust deposition in Puerto Rico: analysis of a 20-year rainfall chemistry record and comparison with models. Atmos Environ 216:116907

    Google Scholar 

  • McLauchlan K (2006) The nature and longevity of agricultural impacts on soil carbon and nutrients: a review. Ecosystems 9:1364–1382

    Article  Google Scholar 

  • Moravec B, Chorover J (2020) Critical zone biogeochemistry: linking structure and function. In: Dontsova K, Balogh-Brunstad Z, Le Roux G (eds) Biogeochemical cycles

    Google Scholar 

  • National Research Council (2001) Basic research opportunities in earth science. National Academic Press, Washington DC

    Google Scholar 

  • Neumann RB, Cardon ZG (2012) The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies. New Phytol 194:337–352

    Article  Google Scholar 

  • O’Connell C, Ruan L, Silver WL (2018) Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions. Nat Commun 9:1–9

    Article  Google Scholar 

  • Pelletier JD, Barron-Gafford GA, Gutierrez-Jurado H, Hinckley ES, Istanbulluoglu E, McGuire LA et al (2017) Which way do you lean? Using slope aspect variations to understand critical zone processes and feedbacks. Earth Surf Proc Land 43:1133–1154

    Article  Google Scholar 

  • Rasmussen C, Troch PA, Chorover J, Brooks P, Pelletier J, Huxman TE (2011) An open system energy-based framework for predicting critical zone structure and function. Biogeochemistry 102:15–29

    Article  Google Scholar 

  • Rempe DM, Dietrich WE (2018) Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc Natl Acad Sci 115:2664–2669

    Article  Google Scholar 

  • Richter DB, Billings SA (2015) ‘One physical system’: Tansley’s ecosystem as Earth’s critical zone. New Phytol 206:900–912

    Article  Google Scholar 

  • Roque-Malo S, Yan Q, Woo DK, Druhan JL, Kumar P (2022) Advances in biogeochemical modeling for intensively managed landscapes. In: Wymore AS, Yang WH, Silver WL, McDowell WH, Chorover J (eds) Biogeochemistry of the critical zone. Springer-Nature, Berlin

    Google Scholar 

  • Schlesinger WH (2004) Better living through biogeochemistry. Ecology 85:2402–2407

    Article  Google Scholar 

  • Schulz M, Manies K (2022) Biofilms in the critical zone: distribution and mediation of processes. In: Wymore AS, Yang WH, Silver WL, McDowell WH, Chorover J (eds) Biogeochemistry of the critical zone. Springer-Nature, Berlin

    Google Scholar 

  • Sullivan PL, Ma L, West N, Jin L, Karwan DL, Noireaux J et al (2016) CZ-tope at Susquehanna Shale Hills CZO: synthesizing multiple isotope proxies to elucidate critical zone processes across timescales in a temperate forested landscape. Chem Geol 445:103–119

    Article  Google Scholar 

  • Taylor LL, Leake JR, Quirk J, Hardy K, Banwart SA, Beerling DJ (2009) Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology 7:171–191

    Article  Google Scholar 

  • Tune AK, Druhan JL, Wang J, Bennet PC, Rempe DM (2020) Carbon dioxide production in bedrock beneath soils substantially contributes to forest carbon cycling. J Geophys Res–Biogeosci 125:e2020JG005795

    Google Scholar 

  • Vidon P, Allan C, Burns D, Duval TP, Gurwick N, Inamdar S et al (2010) Hot spots and hot moments in riparian zones: potential for improved water quality management. J Am Water Resour Assoc 46:278–298

    Article  Google Scholar 

  • Wymore AS, Brereton RL, Ibarra D, Maher K, McDowell WH (2017) Critical zone structure controls concentration-runoff relationships in watersheds draining a tropical montane forest. Water Resour Res 53:6279–6295

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam S. Wymore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wymore, A.S., Yang, W.H., Silver, W.L., McDowell, W.H., Chorover, J. (2022). An Introduction to Biogeochemistry of the Critical Zone. In: Wymore, A.S., Yang, W.H., Silver, W.L., McDowell, W.H., Chorover, J. (eds) Biogeochemistry of the Critical Zone. Advances in Critical Zone Science. Springer, Cham. https://doi.org/10.1007/978-3-030-95921-0_1

Download citation

Publish with us

Policies and ethics