Skip to main content

Pathology of Musculoskeletal Infections

  • Chapter
  • First Online:
Pediatric Musculoskeletal Infections

Abstract

Pediatric musculoskeletal infections (MSKI) can be a challenging pathology given the heterogeneity of anatomic location, variable clinical signs and symptoms, and range of possible adverse outcomes. Clinical advancements in diagnostics and imaging over the past two decades have markedly improved a physician’s capacity to identify MSKIs from noninfectious etiologies, thereby supporting timely antibiotic administration and surgical interventions. In conjunction with these effective treatment strategies, to continually improve the care of patients with MSKI, physicians are working to limit patient morbidity by reducing the incidence and severity of adverse outcomes. Driven in proportion to disease severity, adverse medical and musculoskeletal outcomes following MSKI can have lifelong implications for the child. The severity of an infection is a summation of the virulence and dissemination of the pathogen, combined with the level to which the body responds to the pathogen, referred to as the acute-phase response (APR). Throughout this chapter, we will discuss the pathology of MSKI, highlighting that infections are a form of continuous injury capable of driving an exuberant APR that is proportional to the incidence and severity of medical and musculoskeletal adverse outcomes experienced by children with MSKI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Dr. Isaac Thomsen – Vanderbilt University Pediatric Infectious Disease

References

  1. Schoenecker JG, The Children’s Orthopaedic Trauma and Infection Consortium for Evidence Based Study (CORTICES) Group. Defining the volume of consultations for musculoskeletal infection encountered by pediatric orthopaedic services in the United States. PLoS One. 2020;15(6):e0234055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Morrissy RT, Haynes DW. Acute hematogenous osteomyelitis: a model with trauma as an etiology. J Pediatr Orthop. 1989;9(4):447–56.

    Article  CAS  PubMed  Google Scholar 

  3. Whalen JL, Fitzgerald RH Jr, Morrissy RT. A histological study of acute hematogenous osteomyelitis following physeal injuries in rabbits. J Bone Joint Surg Am. 1988;70(9):1383–92.

    Article  CAS  PubMed  Google Scholar 

  4. Stannard JP, Robinson JT, Anderson ER, McGwin G Jr, Volgas DA, Alonso JE. Negative pressure wound therapy to treat hematomas and surgical incisions following high-energy trauma. J Trauma. 2006;60(6):1301–6.

    Article  PubMed  Google Scholar 

  5. Alshryda S, Howard JJ, Huntley JS, Schoenecker JG. The pediatric and adolescent hip: essentials and evidence. Springer Nature Switzerland AG 2019.

    Google Scholar 

  6. Rosenfeld S, Bernstein DT, Daram S, Dawson J, Zhang W. Predicting the presence of adjacent infections in septic arthritis in children. J Pediatr Orthop. 2016;36(1):70–4.

    Article  PubMed  Google Scholar 

  7. Hobo T. Zur Pathogenese der akuten haematogenen osteomyelitis. Acta Sch Med Univ Kioto. 1921;4:1–29.

    Google Scholar 

  8. Cunningham R, Cockayne A, Humphreys H. Clinical and molecular aspects of the pathogenesis of Staphylococcus aureus bone and joint infections. J Med Microbiol. 1996;44(3):157–64.

    Article  CAS  PubMed  Google Scholar 

  9. Yi J, Wood JB, Creech CB, Williams D, Jimenez-Truque N, Yildirim I, et al. Clinical epidemiology and outcomes of pediatric musculoskeletal infections. J Pediatr. 2021;234:236–244.e2.

    Article  PubMed  Google Scholar 

  10. Peltola H, Vahvanen V. A comparative study of osteomyelitis and purulent arthritis with special reference to aetiology and recovery. Infection. 1984;12(2):75–9.

    Article  CAS  PubMed  Google Scholar 

  11. Nade S. Acute septic arthritis in infancy and childhood. J Bone Joint Surg Br. 1983;65(3):234–41.

    Article  CAS  PubMed  Google Scholar 

  12. Soto-Hall R, Johnson LH, Johnson RA. Variations in the intra-articular pressure of the hip joint in injury and disease. A probable factor in avascular necrosis. J Bone Joint Surg Am. 1964;46:509–16.

    Article  CAS  PubMed  Google Scholar 

  13. Moore-Lotridge SN, Gibson BH, Duvernay MT, Martus JE, Thomsen IP, Schoenecker JG. Pediatric musculoskeletal infection. JPOSNA. 2020;2:2.

    Google Scholar 

  14. Mignemi ME, Benvenuti MA, An TJ, Martus JE, Mencio GA, Lovejoy SA, et al. A novel classification system based on dissemination of musculoskeletal infection is predictive of hospital outcomes. J Pediatr Orthop. 2018;38(5):279–86.

    Article  PubMed  Google Scholar 

  15. Amaro E, Marvi TK, Posey SL, Benvenuti MA, An TJ, Dale KM, et al. C-reactive protein predicts risk of venous thromboembolism in pediatric musculoskeletal infection. J Pediatr Orthop. 2019;39(1):e62–e7.

    Article  PubMed  Google Scholar 

  16. Copley LA, Barton T, Garcia C, Sun D, Gaviria-Agudelo C, Gheen WT, et al. A proposed scoring system for assessment of severity of illness in pediatric acute hematogenous osteomyelitis using objective clinical and laboratory findings. Pediatr Infect Dis J. 2014;33(1):35–41.

    Article  PubMed  Google Scholar 

  17. Mignemi ME, Menge TJ, Cole HA, Mencio GA, Martus JE, Lovejoy S, et al. Epidemiology, diagnosis, and treatment of pericapsular pyomyositis of the hip in children. J Pediatr Orthop. 2014;34(3):316–25.

    Article  PubMed  Google Scholar 

  18. Comegna L, Guidone PI, Prezioso G, Franchini S, Petrosino MI, Di Filippo P, et al. Pyomyositis is not only a tropical pathology: a case series. J Med Case Rep. 2016;10(1):1–6.

    Article  Google Scholar 

  19. Shuler FD, Buchanan GS, Stover C, Johnson B, Modarresi M, Jasko JJ. Pyomyositis mistaken for septic hip arthritis in children: the role of MRI in diagnosis and management. Marshall J Med. 2018;4(2):22.

    Article  Google Scholar 

  20. Chotai PN, Hsiao MS, Pathak I, Banh D, Abdou M, Abdelgawad AA. Pediatric pelvic pyomyositis: initial MRI can be misleading. J Pediatr Orthop B. 2016;25(6):520–4.

    Article  PubMed  Google Scholar 

  21. Levitt DL, Byer R, Miller AF. Point-of-care ultrasound to diagnose pyomyositis in a child. Pediatr Emerg Care. 2019;35(1):69–71.

    Article  PubMed  Google Scholar 

  22. Gibian JT, Daryoush JR, Wollenman CC, Johnson SR, Henry A, Koehler RJ, et al. The heterogeneity of pediatric knee infections: a retrospective analysis. J Pediatr Orthop. 2020;40(6):314–21.

    Article  PubMed  Google Scholar 

  23. Benvenuti M, An T, Amaro E, Lovejoy S, Mencio G, Martus J, et al. Double-edged sword: musculoskeletal infection provoked acute phase response in children. Orthop Clin North Am. 2017;48(2):181–97.

    Article  PubMed  Google Scholar 

  24. Oelsner WK, Engstrom SM, Benvenuti MA, An TJ, Jacobson RA, Polkowski GG, et al. Characterizing the acute phase response in healthy patients following Total joint arthroplasty: predictable and consistent. J Arthroplast. 2017;32(1):309–14.

    Article  Google Scholar 

  25. Blyth MJ, Kincaid R, Craigen MA, Bennet GC. The changing epidemiology of acute and subacute haematogenous osteomyelitis in children. J Bone Joint Surg Br. 2001;83(1):99–102.

    Article  CAS  PubMed  Google Scholar 

  26. Mantadakis E, Plessa E, Vouloumanou EK, Michailidis L, Chatzimichael A, Falagas ME. Deep venous thrombosis in children with musculoskeletal infections: the clinical evidence. Int J Infect Dis. 2012;16(4):e236–e43.

    Article  PubMed  Google Scholar 

  27. Ciampolini J, Harding KG. Pathophysiology of chronic bacterial osteomyelitis. Why do antibiotics fail so often? Postgrad Med J. 2000;76(898):479–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Song KM, Sloboda JF. Acute hematogenous osteomyelitis in children. J Am Acad Orthop Surg. 2001;9(3):166–75.

    Article  CAS  PubMed  Google Scholar 

  29. Benvenuti MA, An TJ, Mignemi ME, Martus JE, Mencio GA, Lovejoy SA, et al. A clinical prediction algorithm to stratify pediatric musculoskeletal infection by severity. J Pediatr Orthop. 2019;39(3):153–7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Alshryda S, Huntley JS, Banaszkiewicz PA. Paediatric orthopaedics: an evidence-based approach to clinical questions. Cham: Springer International Publishing; 2016.

    Google Scholar 

  31. Adebiyi EO, Ayoade F. Kingella Kingae. Treasure Island: StatPearls Publishing; 2019.

    Google Scholar 

  32. Wong M, Williams N, Cooper C. Systematic review of kingella kingae musculoskeletal infection in children: epidemiology, impact and management strategies. Pediatric Health Med Ther. 2020;11:73–84.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yagupsky P, Erlich Y, Ariela S, Trefler R, Porat N. Outbreak of Kingella kingae skeletal system infections in children in daycare. Pediatr Infect Dis J. 2006;25(6):526–32.

    Article  PubMed  Google Scholar 

  34. Yagupsky P, Porsch E, St Geme JW. Kingella kingae: an emerging pathogen in young children. Pediatrics. 2011;127(3):557–65.

    Article  PubMed  Google Scholar 

  35. Fayad LM, Carrino JA, Fishman EK. Musculoskeletal infection: role of CT in the emergency department. Radiographics. 2007;27(6):1723–36.

    Article  PubMed  Google Scholar 

  36. Calhoun JH, Manring MM, Shirtliff M. Osteomyelitis of the long bones. Semin Plast Surg. 2009;23(2):59–72.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bottiger LE, Svedberg CA. Normal erythrocyte sedimentation rate and age. Br Med J. 1967;2(5544):85–7.

    Article  CAS  PubMed  Google Scholar 

  38. Sox HC Jr, Liang MH. The erythrocyte sedimentation rate. Guidelines for rational use. Ann Intern Med. 1986;104(4):515–23.

    Article  PubMed  Google Scholar 

  39. Michail M, Jude E, Liaskos C, Karamagiolis S, Makrilakis K, Dimitroulis D, et al. The performance of serum inflammatory markers for the diagnosis and follow-up of patients with osteomyelitis. Int J Low Extrem Wounds. 2013;12(2):94–9.

    Article  CAS  PubMed  Google Scholar 

  40. Kobayashi SD, Voyich JM, Burlak C, DeLeo FR. Neutrophils in the innate immune response. Arch Immunol Ther Exp. 2005;53(6):505–17.

    CAS  Google Scholar 

  41. An TJ, Benvenuti MA, Mignemi ME, Thomsen IP, Schoenecker JG. Pediatric musculoskeletal infection: hijacking the acute-phase response. JBJS Rev. 2016;4(9):e4.

    Article  PubMed  Google Scholar 

  42. Kobayashi SD, Malachowa N, DeLeo FR. Influence of microbes on neutrophil life and death. Front Cell Infect Microbiol. 2017;7:159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. de Jager CPC, van Wijk PTL, Mathoera RB, de Jongh-Leuvenink J, van der Poll T, Wever PC. Lymphocytopenia and neutrophil-lymphocyte count ratio predict bacteremia better than conventional infection markers in an emergency care unit. Crit Care. 2010;14(5):R192.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Naess A, Mo R, Nilssen SS, Eide GE, Sjursen H. Infections in patients hospitalized for fever as related to duration and other predictors at admittance. Infection. 2014;42(3):485–92.

    Article  CAS  PubMed  Google Scholar 

  45. Loonen AJ, de Jager CP, Tosserams J, Kusters R, Hilbink M, Wever PC, et al. Biomarkers and molecular analysis to improve bloodstream infection diagnostics in an emergency care unit. PLoS One. 2014;9(1):e87315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lowsby R, Gomes C, Jarman I, Lisboa P, Nee PA, Vardhan M, et al. Neutrophil to lymphocyte count ratio as an early indicator of blood stream infection in the emergency department. Emerg Med J. 2015;32(7):531–4.

    Article  PubMed  Google Scholar 

  47. Naess A, Nilssen SS, Mo R, Eide GE, Sjursen H. Role of neutrophil to lymphocyte and monocyte to lymphocyte ratios in the diagnosis of bacterial infection in patients with fever. Infection. 2017;45(3):299–307.

    Article  CAS  PubMed  Google Scholar 

  48. de Jager CP, Wever PC, Gemen EF, Kusters R, van Gageldonk-Lafeber AB, van der Poll T, et al. The neutrophil-lymphocyte count ratio in patients with community-acquired pneumonia. PLoS One. 2012;7(10):e46561.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Terradas R, Grau S, Blanch J, Riu M, Saballs P, Castells X, et al. Eosinophil count and neutrophil-lymphocyte count ratio as prognostic markers in patients with bacteremia: a retrospective cohort study. PLoS One. 2012;7(8):e42860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. PE Schwab, Varady N, Chen A. Novel marker for septic hip and knee arthritis: neutrophil-to-lymphocyte ratio is a strong predictor of treatment failure and postoperative 90-day mortality. Orthopaed Proc. 2019;101-B(Supp_14):63–.

    Google Scholar 

  51. Kerrigan SW. The expanding field of platelet-bacterial interconnections. Platelets. 2015;26(4):293–301.

    Article  CAS  PubMed  Google Scholar 

  52. Ali RA, Wuescher LM, Dona KR, Worth RG. Platelets mediate host defense against Staphylococcus aureus through direct bactericidal activity and by enhancing macrophage activities. J Immunol. 2017;198(1):344–51.

    Article  CAS  PubMed  Google Scholar 

  53. McNicol A, Israels SJ. Beyond hemostasis: the role of platelets in inflammation, malignancy and infection. Cardiovasc Hematol Disord Drug Targets. 2008;8(2):99–117.

    Article  CAS  PubMed  Google Scholar 

  54. Klinger MHF, Jelkmann W. Role of blood platelets in infection and inflammation. J Interf Cytokine Res. 2002;22(9):913–22.

    Article  CAS  Google Scholar 

  55. Kral JB, Schrottmaier WC, Salzmann M, Assinger A. Platelet interaction with innate immune cells. Transfus Med Hemother. 2016;43(2):78–88.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Riise ØR, Kirkhus E, Handeland KS, Flatø B, Reiseter T, Cvancarova M, et al. Childhood osteomyelitis-incidence and differentiation from other acute onset musculoskeletal features in a population-based study. BMC Pediatr. 2008;8(1):45.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Assinger A, Schrottmaier WC, Salzmann M, Rayes J. Platelets in sepsis: an update on experimental models and clinical data. Front Immunol. 2019;10:1687–.

    Google Scholar 

  58. Hysong AA, Posey SL, Blum DM, Benvenuti MA, Benvenuti TA, Johnson SR, et al. Necrotizing fasciitis: pillaging the acute phase response. JBJS. 2020;102(6):526–37.

    Article  Google Scholar 

  59. Mignemi M, Copley L, Schoenecker J. Evidence-based treatment for musculoskeletal infection. In: Paediatric orthopaedics. Springer; 2017. p. 403–18.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan G. Schoenecker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moore-Lotridge, S.N., Schoenecker, J.G. (2022). Pathology of Musculoskeletal Infections. In: Belthur, M.V., Ranade, A.S., Herman, M.J., Fernandes, J.A. (eds) Pediatric Musculoskeletal Infections. Springer, Cham. https://doi.org/10.1007/978-3-030-95794-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95794-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95793-3

  • Online ISBN: 978-3-030-95794-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics