Skip to main content

Old and New Results on Density of Stable Mappings

  • Chapter
  • First Online:
Handbook of Geometry and Topology of Singularities III

Abstract

Density of stable maps is the common thread of this paper. We review Whitney’s contribution to singularities of differentiable mappings and Thom-Mather theories on C and C0-stability. Infinitesimal and algebraic methods are presented in order to prove Theorems A and B on density of proper stable and topologically stable mappings f : Nn → Pp. Theorem A states that the set of proper stable maps is dense in the set of all proper maps from N to P, if and only if the pair (n, p) is in nice dimensions, while Theorem B shows that density of topologically stable maps holds for any pair (n, p). A short review of results by du Plessis and Wall on the range in which proper smooth mappings are C1- stable is given. A Thom-Mather map is a topologically stable map f : N → P whose associated k-jet map jk f : N → P is transverse to the Thom-Mather stratification in Jk(N, P). We give a detailed description of Thom-Mather maps for pairs (n, p) in the boundary of the nice dimensions. The main open question on density of stable mappings is to determine the pairs (n, p) for which Lipschitz stable mappings are dense. We discuss recent results by Nguyen, Ruas and Trivedi on this subject, formulating conjectures for the density of Lipschitz stable mappings in the boundary of the nice dimensions. At the final section, Damon’s results relating \(\mathcal {A}\)-classification of map-germs and \(\mathcal {K}_{V}\) classification of sections of the discriminant of a stable unfolding of f are reviewed and open problems are discussed.

The analysis of the conditions for a map-germ to be finitely determined and of the degree of determinacy involves the most important of the local aspects of singularity theory.

C. T. C. Wall [ 108 ]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andronov, A., Pontryagin, L.: Sistèmes grossiers. Doklady Akademi Nauk SSSR 5, 247–250 (1937)

    MATH  Google Scholar 

  2. Andronow, A.A., Chaikin, C.E.: Theory of Oscillations. Princeton University Press, Princeton, N. J. (1949). English Language Edition Edited Under the Direction of Solomon Lefschetz

    Google Scholar 

  3. Arnol’ d, V.I.: Normal forms of functions near degenerate critical points, the Weyl groups Ak, Dk, Ek and Lagrangian singularities. Funkcional. Anal. i Priložen. 6(4), 3–25 (1972)

    Google Scholar 

  4. Arnol’ d, V.I.: Critical points of smooth functions, and their normal forms. Uspehi Mat. Nauk 30(5(185)), 3–65 (1975)

    Google Scholar 

  5. Arnol’ d, V.I.: Local normal forms of functions. Invent. Math. 35, 87–109 (1976). https://doi.org/10.1007/BF01390134

  6. Atique, R.W., Ruas, M.A.S., Sinha, R.O.: The extra-nice dimensions. arXiv eprint 1804.09414 (2018)

    Google Scholar 

  7. Behrens, S., Hayano, K.: Elimination of cusps in dimension 4 and its applications. Proc. Lond. Math. Soc. (3) 113(5), 674–724 (2016). https://doi.org/10.1112/plms/pdw042

  8. Birbrair, L., Costa, J.C.F., Fernandes, A., Ruas, M.A.S.: \(\mathcal K\)-bi-Lipschitz equivalence of real function-germs. Proc. Amer. Math. Soc. 135(4), 1089–1095 (2007). https://doi.org/10.1090/S0002-9939-06-08566-2

  9. Birbrair, L., Fernandes, A., Grandjean, V., Gabrielov, A.: Lipschitz contact equivalence of function germs in \(\mathbb R^2\). Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 17(1), 81–92 (2017)

    Google Scholar 

  10. Birbrair, L., Fernandes, A., Grandjean, V., Gaffney, T.: Blow-analytic equivalence versus contact bi-Lipschitz equivalence. J. Math. Soc. Japan 70(3), 989–1006 (2018). https://doi.org/10.2969/jmsj/74237423

    Article  MathSciNet  MATH  Google Scholar 

  11. Boardman, J.M.: Singularities of differentiable maps. Inst. Hautes Études Sci. Publ. Math. (33), 21–57 (1967). http://www.numdam.org/item?id=PMIHES_1967__33__21_0

    Article  MathSciNet  MATH  Google Scholar 

  12. Bruce, J.W.: On the canonical stratification of complex analytic functions. Bull. London Math. Soc. 12(2), 111–114 (1980). https://doi.org/10.1112/blms/12.2.111

    Article  MathSciNet  MATH  Google Scholar 

  13. Bruce, J.W., Giblin, P.J.: Curves and singularities. Cambridge University Press, Cambridge (1984). A geometrical introduction to singularity theory

    Google Scholar 

  14. Bruce, J.W., du Plessis, A.A., Wall, C.T.C.: Determinacy and unipotency. Invent. Math. 88(3), 521–554 (1987). https://doi.org/10.1007/BF01391830

    Article  MathSciNet  MATH  Google Scholar 

  15. Bruce, J.W., Ruas, M.A.S., Saia, M.J.: A note on determinacy. Proc. Amer. Math. Soc. 115(3), 865–871 (1992). https://doi.org/10.2307/2159239

    Article  MathSciNet  MATH  Google Scholar 

  16. Cerf, J.: La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie. Inst. Hautes Études Sci. Publ. Math. (39), 5–173 (1970). http://www.numdam.org/item?id=PMIHES_1970__39__5_0

    Article  MATH  Google Scholar 

  17. Cooper, T., Mond, D., Wik Atique, R.: Vanishing topology of codimension 1 multi-germs over \(\mathbb R\) and \(\mathbb C\). Compositio Math. 131(2), 121–160 (2002). https://doi.org/10.1023/A:1014930205374

  18. Damon, J.: The classification of discrete algebra types. City University of New York

    Google Scholar 

  19. Damon, J.: Topological properties of discrete algebra types. I. The Hilbert-Samuel function. In: Studies in algebraic topology, Adv. in Math. Suppl. Stud., vol. 5, pp. 83–118. Academic Press, New York-London (1979)

    Google Scholar 

  20. Damon, J.: Topological properties of discrete algebra types. II. Real and complex algebras. Amer. J. Math. 101(6), 1219–1248 (1979). https://doi.org/10.2307/2374137

    MATH  Google Scholar 

  21. Damon, J.: Topological stability in the nice dimensions. Topology 18(2), 129–142 (1979). https://doi.org/10.1016/0040-9383(79)90031-4

    Article  MathSciNet  MATH  Google Scholar 

  22. Damon, J.: Finite determinacy and topological triviality. I. Invent. Math. 62(2), 299–324 (1980/81). https://doi.org/10.1007/BF01389162

    Article  MathSciNet  MATH  Google Scholar 

  23. Damon, J.: Finite determinacy and topological triviality. II. Sufficient conditions and topological stability. Compositio Math. 47(2), 101–132 (1982). http://www.numdam.org/item?id=CM_1982__47_2_101_0

    MathSciNet  MATH  Google Scholar 

  24. Damon, J.: The unfolding and determinacy theorems for subgroups of \({\mathcal A}\) and \({\mathcal K}\). Mem. Amer. Math. Soc. 50(306), x+88 (1984). https://doi.org/10.1090/memo/0306

  25. Damon, J.: \({\mathcal A}\)-equivalence and the equivalence of sections of images and discriminants. In: Singularity theory and its applications, Part I (Coventry, 1988/1989), Lecture Notes in Math., vol. 1462, pp. 93–121. Springer, Berlin (1991). https://doi.org/10.1007/BFb0086377

  26. Damon, J., Mond, D.: \({\mathcal A}\)-codimension and the vanishing topology of discriminants. Invent. Math. 106(2), 217–242 (1991). https://doi.org/10.1007/BF01243911

  27. Dimca, A., Gibson, C.G.: On contact simple germs of the plane. University of Liverpool

    Google Scholar 

  28. Dimca, A., Gibson, C.G.: Contact unimodular germs from the plane to the plane. Quart. J. Math. Oxford Ser. (2) 34(135), 281–295 (1983). https://doi.org/10.1093/qmath/34.3.281

  29. Dimca, A., Gibson, C.G.: Classification of equidimensional contact unimodular map germs. Math. Scand. 56(1), 15–28 (1985). https://doi.org/10.7146/math.scand.a-12085

    Article  MathSciNet  MATH  Google Scholar 

  30. Edwards, S.A., Wall, C.T.C.: Nets of quadrics and deformations of Σ3〈3〉 singularities. Math. Proc. Cambridge Philos. Soc. 105(1), 109–115 (1989). https://doi.org/10.1017/S0305004100001407

    Article  MathSciNet  MATH  Google Scholar 

  31. Eisenbud, D.: An algebraic approach to the topological degree of a smooth map. Bull. Amer. Math. Soc. 84(5), 751–764 (1978). https://doi.org/10.1090/S0002-9904-1978-14509-1

    Article  MathSciNet  MATH  Google Scholar 

  32. Farnik, M., Jelonek, Z., Ruas, M.A.S.: Whitney theorem for complex polynomial mappings. Math. Z. 295(3–4), 1039–1065 (2020). https://doi.org/10.1007/s00209-019-02370-1

    Article  MathSciNet  MATH  Google Scholar 

  33. Fernandes, A.C.G., Ruas, M.A.S.: Bi-Lipschitz determinacy of quasihomogeneous germs. Glasg. Math. J. 46(1), 77–82 (2004). https://doi.org/10.1017/S001708950300154X

    Article  MathSciNet  MATH  Google Scholar 

  34. Forstnerič, F.: Holomorphic flexibility properties of complex manifolds. Amer. J. Math. 128(1), 239–270 (2006). http://muse.jhu.edu/journals/american_journal_of_mathematics/v128/128.1forstneriv_c.pdf

    Article  MathSciNet  MATH  Google Scholar 

  35. Fukui, T., Koike, S., Kuo, T.C.: Blow-analytic equisingularities, properties, problems and progress. In: Real analytic and algebraic singularities (Nagoya/Sapporo/Hachioji, 1996), Pitman Res. Notes Math. Ser., vol. 381, pp. 8–29. Longman, Harlow (1998)

    Google Scholar 

  36. Gaffney, T.: On the order of determination of a finitely determined germ. Invent. Math. 37(2), 83–92 (1976). https://doi.org/10.1007/BF01418963

    Article  MathSciNet  MATH  Google Scholar 

  37. Gaffney, T.: A note on the order of determination of a finitely determined germ. Invent. Math. 52(2), 127–130 (1979). https://doi.org/10.1007/BF01403059

    Article  MathSciNet  MATH  Google Scholar 

  38. Gibson, C.G.: Singular points of smooth mappings, Research Notes in Mathematics, vol. 25. Pitman (Advanced Publishing Program), Boston, Mass.-London (1979)

    Google Scholar 

  39. Gibson, C.G., Wirthmüller, K., du Plessis, A.A., Looijenga, E.J.N.: Topological stability of smooth mappings. Lecture Notes in Mathematics, Vol. 552. Springer-Verlag, Berlin-New York (1976)

    Google Scholar 

  40. Golubitsky, M., Guillemin, V.: Stable mappings and their singularities. Springer-Verlag, New York-Heidelberg (1973). Graduate Texts in Mathematics, Vol. 14

    Google Scholar 

  41. Gomez-Morales, M.L.: Codimension one discriminants. Ph.D. thesis, University of Warwick (2014)

    Google Scholar 

  42. Hayano, K.: Stability of non-proper functions. ArXiv preprint number 1809.02332

    Google Scholar 

  43. Henry, J.P., Parusiński, A.: Existence of moduli for bi-Lipschitz equivalence of analytic functions. Compositio Math. 136(2), 217–235 (2003). https://doi.org/10.1023/A:1022726806349

    Article  MathSciNet  MATH  Google Scholar 

  44. Igusa, K.: Higher singularities of smooth functions are unnecessary. Ann. of Math. (2) 119(1), 1–58 (1984). https://doi.org/10.2307/2006962

  45. Izumiya, S., Romero Fuster, M.d.C., Ruas, M.A.S., Tari, F.: Differential geometry from a singularity theory viewpoint. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2016)

    Google Scholar 

  46. Kaliman, S., Zaı̆denberg, M.: A tranversality theorem for holomorphic mappings and stability of Eisenman-Kobayashi measures. Trans. Amer. Math. Soc. 348(2), 661–672 (1996). https://doi.org/10.1090/S0002-9947-96-01482-1

  47. Koike, S., Parusiński, A.: Blow-analytic equivalence of two variable real analytic function germs. J. Algebraic Geom. 19(3), 439–472 (2010). https://doi.org/10.1090/S1056-3911-09-00527-X

    Article  MathSciNet  MATH  Google Scholar 

  48. Koike, S., Parusiński, A.: Equivalence relations for two variable real analytic function germs. J. Math. Soc. Japan 65(1), 237–276 (2013). https://doi.org/10.2969/jmsj/06510237

    Article  MathSciNet  MATH  Google Scholar 

  49. Ł ojasiewicz, S.: Sur les ensembles semi-analytiques. In: Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, pp. 237–241 (1971)

    Google Scholar 

  50. Levine, H.I.: Elimination of cusps. Topology 3(suppl, suppl. 2), 263–296 (1965). https://doi.org/10.1016/0040-9383(65)90078-9

  51. Looijenga, E.: On the semi-universal deformation of a simple-elliptic hypersurface singularity. Unimodularity. Topology 16(3), 257–262 (1977). https://doi.org/10.1016/0040-9383(77)90006-4

    Article  MathSciNet  MATH  Google Scholar 

  52. Looijenga, E.: On the semi-universal deformation of a simple-elliptic hypersurface singularity. II. The discriminant. Topology 17(1), 23–40 (1978). https://doi.org/10.1016/0040-9383(78)90010-1

    Article  MathSciNet  MATH  Google Scholar 

  53. Martinet, J.: Déploiements stables des germes de type fini, et détermination finie des applications différentiables. Bol. Soc. Brasil. Mat. 7(2), 89–109 (1976). https://doi.org/10.1007/BF02584784

    Article  MathSciNet  MATH  Google Scholar 

  54. Martinet, J.: Déploiements versels des applications différentiables et classification des applications stables. In: Singularités d’applications différentiables (Sém., Plans-sur-Bex, 1975), pp. 1–44. Lecture Notes in Math., Vol. 535 (1976)

    Google Scholar 

  55. Martinet, J.: Singularités des fonctions et applications différentiables. Pontifíia Universidade Católica do Rio de Janeiro, Rio de Janeiro (1977). Deuxième édition corrigée, Monografias de Matemática da PUC/RJ, No. 1. [Mathematical Monographs of the PUC/RJ, No. 1]

    Google Scholar 

  56. Mather, J.: Notes on topological stability. Bull. Amer. Math. Soc. (N.S.) 49(4), 475–506 (2012). https://doi.org/10.1090/S0273-0979-2012-01383-6

  57. Mather, J.N.: Stability of C mappings. I. The division theorem. Ann. of Math. (2) 87, 89–104 (1968). https://doi.org/10.2307/1970595

  58. Mather, J.N.: Stability of C mappings. III. Finitely determined mapgerms. Inst. Hautes Études Sci. Publ. Math. (35), 279–308 (1968). http://www.numdam.org/item?id=PMIHES_1968__35__279_0

    Google Scholar 

  59. Mather, J.N.: Some non-finitely determined map-germs. In: Symposia Mathematica, Vol. II (INDAM, Rome, 1968), pp. 303–320. Academic Press, London (1969)

    Google Scholar 

  60. Mather, J.N.: Stability of C mappings. II. Infinitesimal stability implies stability. Ann. of Math. (2) 89, 254–291 (1969). https://doi.org/10.2307/1970668

  61. Mather, J.N.: Stability of C mappings. IV. Classification of stable germs by R-algebras. Inst. Hautes Études Sci. Publ. Math. (37), 223–248 (1969). http://www.numdam.org/item?id=PMIHES_1969__37__223_0

  62. Mather, J.N.: Stability of C mappings. V. Transversality. Advances in Math. 4, 301–336 (1970) (1970). https://doi.org/10.1016/0001-8708(70)90028-9

  63. Mather, J.N.: Stability of C mappings. VI: The nice dimensions. In: Proceedings of Liverpool Singularities-Symposium, I (1969/70), pp. 207–253. Lecture Notes in Math., Vol. 192 (1971)

    Google Scholar 

  64. Mather, J.N.: On Thom-Boardman singularities. In: Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pp. 233–248 (1973)

    Google Scholar 

  65. Mather, J.N.: Stratifications and mappings. In: Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pp. 195–232. Academic Press, New York (1973)

    Google Scholar 

  66. Mather, J.N.: How to stratify mappings and jet spaces. In: Singularités d’applications différentiables (Sém., Plans-sur-Bex, 1975), pp. 128–176. Lecture Notes in Math., Vol. 535. Springer, Berlin (1976)

    Google Scholar 

  67. May, R.D.: Transversality prperties of topologically stable mappings. ProQuest LLC, Ann Arbor, MI (1973). http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:0279058. Thesis (Ph.D.)–Harvard University

    Google Scholar 

  68. May, R.D.: Stability and transversality. Bull. Amer. Math. Soc. 80, 85–89 (1974). https://doi.org/10.1090/S0002-9904-1974-13364-1

    Article  MathSciNet  MATH  Google Scholar 

  69. Mond, D., Nuño-Ballesteros, J.: Singularities of Mappings, Grundlehren der mathematischen Wissenschaften, vol. 357. Springer International Publishing (2020). https://doi.org/10.1007/978-3-030-34440-5

  70. Mond, D., Nuño-Ballesteros, J.: Singularities of mappings. In: Handbook of Geometry and Topology of Singularities III. Springer International Publishing (2022)

    MATH  Google Scholar 

  71. Montaldi, J.A.: On contact between submanifolds. Michigan Math. J. 33(2), 195–199 (1986). https://doi.org/10.1307/mmj/1029003348

    Article  MathSciNet  MATH  Google Scholar 

  72. Morse, M.: Relations between the critical points of a real function of n independent variables. Trans. Amer. Math. Soc. 27(3), 345–396 (1925). https://doi.org/10.2307/1989110

    MathSciNet  MATH  Google Scholar 

  73. Morse, M.: The critical points of a function of n variables. Trans. Amer. Math. Soc. 33(1), 72–91 (1931). https://doi.org/10.2307/1989459

    MathSciNet  MATH  Google Scholar 

  74. Murolo, C., du Plessis, A., Trotman, D.: On the smooth whitney fibering conjecture (2017). https://hal.archives-ouvertes.fr/hal-01571382

  75. Nguyen, N., Ruas, M., Trivedi, S.: Classification of Lipschitz simple function germs. Proc. Lond. Math. Soc. (3) 121(1), 51–82 (2020). https://doi.org/10.1112/plms.12310

  76. Nguyen, N., Ruas, M., Trivedi, S.: Density of bi-lipschitz stable amppings. In preparation. (2021)

    Google Scholar 

  77. Parusiński, A., Păunescu, L.: Arc-wise analytic stratification, Whitney fibering conjecture and Zariski equisingularity. Adv. Math. 309, 254–305 (2017). https://doi.org/10.1016/j.aim.2017.01.016

    MATH  Google Scholar 

  78. Peixoto, M.M.: On structural stability. Ann. of Math. (2) 69, 199–222 (1959). https://doi.org/10.2307/1970100

  79. du Plessis, A.: On the determinacy of smooth map-germs. Invent. Math. 58(2), 107–160 (1980). https://doi.org/10.1007/BF01403166

    Article  MathSciNet  MATH  Google Scholar 

  80. du Plessis, A.: Genericity and smooth finite determinacy. In: Singularities, Part 1 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., vol. 40, pp. 295–312. Amer. Math. Soc., Providence, RI (1983)

    Google Scholar 

  81. du Plessis, A., Vosegaard, H.: Characterisation of strong smooth stability. Math. Scand. 88(2), 193–228 (2001). https://doi.org/10.7146/math.scand.a-14323

    Article  MathSciNet  MATH  Google Scholar 

  82. du Plessis, A., Wall, T.: The geometry of topological stability, London Mathematical Society Monographs. New Series, vol. 9. The Clarendon Press, Oxford University Press, New York (1995). Oxford Science Publications

    Google Scholar 

  83. du Plessis, A.A., Wall, C.T.C.: On C1-stability and C1-determinacy. Inst. Hautes Études Sci. Publ. Math. (70), 5–46 (1990) (1989). http://www.numdam.org/item?id=PMIHES_1989__70__5_0

  84. Rieger, J.H.: Recognizing unstable equidimensional maps, and the number of stable projections of algebraic hypersurfaces. Manuscripta Math. 99(1), 73–91 (1999). https://doi.org/10.1007/s002290050163

    Article  MathSciNet  MATH  Google Scholar 

  85. Rieger, J.H., Ruas, M.A.S.: M-deformations of \(\mathcal A\)-simple Σnp+1-germs from \(\mathbb R^n\) to \(\mathbb R^p,\ n\geq p\). Math. Proc. Cambridge Philos. Soc. 139(2), 333–349 (2005). https://doi.org/10.1017/S0305004105008625

  86. Ruas, M.A.S.: On the degree of Cl-determinacy. Math. Scand. 59(1), 59–70 (1986). https://doi.org/10.7146/math.scand.a-12154

    Article  MathSciNet  MATH  Google Scholar 

  87. Ruas, M.A.S.: Basics on lipschitz geometry. In: Introduction to Lipschitz Geometry of Singularities, Lecture Notes of the International School on Singularity Theory and Lipschitz Geometry, Cuernavaca, June 2018, Lecture Notes in Math., vol. 2280, pp. 111–153. Springer International Publishing (2020). https://doi.org/10.1007/978-3-030-61807-0

  88. Ruas, M.A.S., Trivedi, S.: Bi-Lipschitz geometry of contact orbits in the boundary of the nice dimensions. Asian J. Math. 23(6), 953–968 (2019)

    MathSciNet  MATH  Google Scholar 

  89. Ruas, M.A.S., Valette, G.: C0 and bi-Lipschitz \(\mathcal K\)-equivalence of mappings. Math. Z. 269(1–2), 293–308 (2011). https://doi.org/10.1007/s00209-010-0728-z

  90. Soares Ruas, M.A.: Cl-determinação finita e aplicações. Ph.D. thesis, Instituto de Ciências Matemáticas e de Computação- Universidade de São Paulo (1983). https://doi.org/10.11606/T.55.2019.tde-19112019-170213. https://www.teses.usp.br/teses/disponiveis/55/55132/tde-19112019-170213/publico/MariaAparecidaSoaresRuas_DO.pdf

  91. Sotomayor, J.: On Maurício M. Peixoto and the arrival of structural stability to Rio de Janeiro, 1955. An. Acad. Brasil. Ciênc. 92(1), e20191219, 6 (2020). https://doi.org/10.1590/0001-3765202020191219

  92. Thom, R.: Un lemme sur les applications différentiables. Bol. Soc. Mat. Mexicana (2) 1, 59–71 (1956)

    Google Scholar 

  93. Thom, R.: Local topological properties of differentiable mappings. In: Differential Analysis, Bombay Colloq, pp. 191–202. Oxford Univ. Press, London (1964)

    Google Scholar 

  94. Thom, R.: Stabilité structurelle et morphogénèse. W. A. Benjamin, Inc., Reading, Mass. (1972). Essai d’une théorie générale des modèles, Mathematical Physics Monograph Series

    Google Scholar 

  95. Thom, R.: Propriétés différentielles locales des ensembles analytiques (d’après H. Whitney). In: Séminaire Bourbaki, Vol. 9, pp. Exp. No. 281, 69–80. Soc. Math. France, Paris (1995)

    Google Scholar 

  96. Tom, R., Levin, G.d.: Singularities of differentiable mappings. In: Singularities of Differentiable Maps (Russian), pp. 9–101. Izdat. “Mir”, Moscow (1968)

    Google Scholar 

  97. Tougeron, J.C.: Une généralisation du théorème des fonctions implicites. C. R. Acad. Sci. Paris Sér. A-B 262, A487–A489 (1966)

    MathSciNet  MATH  Google Scholar 

  98. Tougeron, J.C.: Idéaux de fonctions différentiables. I. Ann. Inst. Fourier (Grenoble) 18(fasc., fasc. 1), 177–240 (1968). http://www.numdam.org/item?id=AIF_1968__18_1_177_0

  99. Trivedi, S.: Stratified transversality of holomorphic maps. Internat. J. Math. 24(13), 1350106, 12 (2013). https://doi.org/10.1142/S0129167X13501061

  100. Trotman, D.J.A.: Stability of transversality to a stratification implies Whitney (a)-regularity. Invent. Math. 50(3), 273–277 (1978/79). https://doi.org/10.1007/BF01410081

    Article  MathSciNet  MATH  Google Scholar 

  101. Varchenko, A.N.: Algebro-geometrical equisingularity and local topological classification of smooth mappings. In: Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), Vol. 1, pp. 427–431 (1975)

    Google Scholar 

  102. Varčenko, A.N.: The connection between the topological and the algebraic-geometric equisingularity in the sense of Zariski. Funkcional. Anal. i Priložen. 7(2), 1–5 (1973)

    MathSciNet  Google Scholar 

  103. Varčenko, A.N.: Local topological properties of differentiable mappings. Izv. Akad. Nauk SSSR Ser. Mat. 38, 1037–1090 (1974)

    MathSciNet  Google Scholar 

  104. Vassiliev, V.A.: Complements of discriminants of smooth maps: topology and applications, Translations of Mathematical Monographs, vol. 98. American Mathematical Society, Providence, RI (1992). https://doi.org/10.1090/conm/478. Translated from the Russian by B. Goldfarb

  105. Wall, C.T.C.: Regular stratifications. In: Dynamical systems—Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974; presented to E. C. Zeeman on his fiftieth birthday), pp. 332–344. Lecture Notes in Math., Vol. 468 (1975)

    Google Scholar 

  106. Wall, C.T.C.: Stability, pencils and polytopes. Bull. London Math. Soc. 12(6), 401–421 (1980). https://doi.org/10.1112/blms/12.6.401

    Article  MathSciNet  MATH  Google Scholar 

  107. Wall, C.T.C.: Singularities of nets of quadrics. Compositio Math. 42(2), 187–212 (1980/81). http://www.numdam.org/item?id=CM_1980__42_2_187_0

    MathSciNet  MATH  Google Scholar 

  108. Wall, C.T.C.: Finite determinacy of smooth map-germs. Bull. London Math. Soc. 13(6), 481–539 (1981). https://doi.org/10.1112/blms/13.6.481

    Article  MathSciNet  MATH  Google Scholar 

  109. Wall, C.T.C.: Determination of the semi-nice dimensions. Math. Proc. Cambridge Philos. Soc. 97(1), 79–88 (1985). https://doi.org/10.1017/S0305004100062605

    Article  MathSciNet  MATH  Google Scholar 

  110. Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc. 36(1), 63–89 (1934). https://doi.org/10.2307/1989708

    Article  MathSciNet  MATH  Google Scholar 

  111. Whitney, H.: Topological properties of differentiable manifolds. Bull. Amer. Math. Soc. 43(12), 785–805 (1937). https://doi.org/10.1090/S0002-9904-1937-06642-0

    Article  MathSciNet  MATH  Google Scholar 

  112. Whitney, H.: The general type of singularity of a set of 2n − 1 smooth functions of n variables. Duke Math. J. 10, 161–172 (1943). http://projecteuclid.org/euclid.dmj/1077471800

    MathSciNet  MATH  Google Scholar 

  113. Whitney, H.: The singularities of a smooth n-manifold in (2n − 1)-space. Ann. of Math. (2) 45, 247–293 (1944). https://doi.org/10.2307/1969266

  114. Whitney, H.: On singularities of mappings of euclidean spaces. I. Mappings of the plane into the plane. Ann. of Math. (2) 62, 374–410 (1955). https://doi.org/10.2307/1970070

  115. Whitney, H.: Singularities of mappings of Euclidean spaces. In: Symposium internacional de topología algebraica International symposium on algebraic topology, pp. 285–301. Universidad Nacional Autónoma de México and UNESCO, Mexico City (1958)

    Google Scholar 

  116. Whitney, H.: Local properties of analytic varieties. In: Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp. 205–244. Princeton Univ. Press, Princeton, N. J. (1965)

    Google Scholar 

  117. Whitney, H.: Tangents to an analytic variety. Ann. of Math. (2) 81, 496–549 (1965). https://doi.org/10.2307/1970400

  118. Wilson, L.C.: Mappings of finite codimension. Notes

    Google Scholar 

  119. Wirthmüller, K.: Universell topologisch triviale deformationen. Ph.D. thesis, Universität Regensburg (1978)

    Google Scholar 

  120. Wolfsohn, N.Z.: On differentiable maps of Euclidean n-space into Euclidean m-space. ProQuest LLC, Ann Arbor, MI (1952). http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:0179837. Thesis (Ph.D.)–Harvard University

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by CNPq grant # 305695/2019-3 and FAPESP, 2019/21181-0.

I am grateful to Jose Seade for the invitation to publish this work as a chapter of the “Handbook of Geometry and Topology of Singularities.”

Special thanks are due to David Trotman, David Mond and Raul Oset-Sinha for their valuable comments on preliminary versions of this paper, and to Débora Lopes for the help with the figures.

It is a pleasure to thank Nhan Nguyen ans Saurabh Trivedi for helpful discussions on Lipschitz stability of smooth mappings. I am also grateful to the referee for his careful reading and detailed remarks that improved very much the presentation of these notes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Aparecida Soares Ruas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruas, M.A.S. (2022). Old and New Results on Density of Stable Mappings. In: Cisneros-Molina, J.L., Dũng Tráng, L., Seade, J. (eds) Handbook of Geometry and Topology of Singularities III. Springer, Cham. https://doi.org/10.1007/978-3-030-95760-5_1

Download citation

Publish with us

Policies and ethics