Skip to main content

Awake Surgery: Performing an Awake Craniotomy

  • Chapter
  • First Online:
Intraoperative Monitoring

Abstract

Language and cognitive mapping protocols are technically advancing for better results and less epileptogenic events. The mapping technique was first used by Penfield in 1937 who used a 2.5ms pulse duration. Ojemann established a biphasic 1ms technique as a standard in the 1970s. Recently, high-frequency assembly has been introduced for language mapping. Comprehensive understanding of the issues that impact on neural activation, chronaxie, rheobase, and axon fiber is important to correctly judge the efficacy of low- and high-frequency mapping techniques. This chapter focuses on awake craniotomy from a perspective of technical details to ensure a rigorously correct mapping. Side effects and risks related to direct electrical brain stimulation are discussed.

Additionally, language tasks are presented regarding triggering steps and overall patient evaluation. Preoperative, intraoperative, and postoperative tests are explained and made available for readers’ usage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CC:

Corpus callosum

CNS:

Central nervous system

DES:

Direct electrical stimulation

DTI:

Tractography

ECoG:

Electrocorticography

EOR:

Extent of resection

FLAIR:

Fluid-attenuated inversion recovery

GBM:

Glioblastoma

GTR:

Gross total resection

HF:

High frequency

HFC:

High functional connectivity

IDH:

Dehydrogenase gene

iMRI:

Intraoperative magnetic resonance imaging

IOM:

Intraoperative neurophysiology monitoring

ioUS:

Intraoperative ultrasound

LF:

Low frequency

LLG:

Low-grade glioma

MEG:

Magnetoencephalography

MEP:

Motor evoked potential

MGMT:

O6-methylguanine-DNA methyltransferase

NF:

Neurophysiologist

OMFTCT:

Ohy-Maldaun Fast Track Cognitive Test

ON:

Object naming

VMLA:

Verst-Maldaun Language Assessment

References

  1. Penfield W. The interpretive cortex. The stream of consciousness in the human brain can be electrically reactivated. Science. 1959;129:1719–25. https://doi.org/10.1126/science.129.3365.1719.

    Article  CAS  PubMed  Google Scholar 

  2. Leblanc R. The white paper: Wilder Penfield, the stream of consciousness, and the physiology of mind. J Hist Neurosci. 2019;28:416–36. https://doi.org/10.1080/0964704X.2019.1651135.

    Article  PubMed  Google Scholar 

  3. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol (Berl). 2016;131:803–20. https://doi.org/10.1007/s00401-016-1545-1.

    Article  PubMed  Google Scholar 

  4. Ostrom QT, Gittleman H, Liao P, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro-Oncol. 2017;19:v1–v88. https://doi.org/10.1093/neuonc/nox158.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Recht LD, Bernstein M. Low-grade gliomas. Neurol Clin. 1995;13:847–59. https://doi.org/10.1016/s0733-8619(18)30021-5.

    Article  CAS  PubMed  Google Scholar 

  6. Swanson KR, Bridge C, Murray JD, Alvord EC. Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J Neurol Sci. 2003;216:1–10. https://doi.org/10.1016/j.jns.2003.06.001.

    Article  PubMed  Google Scholar 

  7. Jakola AS, Bouget D, Reinertsen I, et al. Spatial distribution of malignant transformation in patients with low-grade glioma. J Neuro-Oncol. 2020;146:373–80. https://doi.org/10.1007/s11060-020-03391-1.

    Article  Google Scholar 

  8. Buckner JC, Shaw EG, Pugh SL, et al. Radiation plus Procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med. 2016;374:1344–55. https://doi.org/10.1056/nejmoa1500925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jakola AS, Myrmel KS, Kloster R, et al. Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas. JAMA – J Am Med Assoc. 2012;308:1881–8. https://doi.org/10.1001/jama.2012.12807.

    Article  CAS  Google Scholar 

  10. Brown TJ, Bota DA, Van Den Bent MJ, et al. Management of low-grade glioma: a systematic review and meta-analysis. Neuro-Oncol Pract. 2019;6:249–58. https://doi.org/10.1093/nop/npy034.

    Article  Google Scholar 

  11. Duffau H. Long-term outcomes after supratotal resection of diffuse low-grade gliomas: a consecutive series with 11-year follow-up. Acta Neurochir. 2016;158:51–8. https://doi.org/10.1007/s00701-015-2621-3.

    Article  PubMed  Google Scholar 

  12. Lacroix M, Abi-Said D, Fourney DR, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95:190–8. https://doi.org/10.3171/jns.2001.95.2.0190.

    Article  CAS  PubMed  Google Scholar 

  13. Sanai N, Polley MY, McDermott MW, et al. An extent of resection threshold for newly diagnosed glioblastomas: clinical article. J Neurosurg. 2011;115:3–8. https://doi.org/10.3171/2011.2.JNS10998.

    Article  PubMed  Google Scholar 

  14. Li YM, Suki D, Hess K, Sawaya R. The influence of maximum safe resection of glioblastoma on survival in 1229 patients: can we do better than gross-total resection? J Neurosurg. 2016b;124:977–88. https://doi.org/10.3171/2015.5.JNS142087.

    Article  PubMed  Google Scholar 

  15. Molinaro AM, Hervey-Jumper S, Morshed RA, et al. Association of Maximal Extent of resection of contrast-enhanced and non-contrast-enhanced tumor with survival within molecular subgroups of patients with newly diagnosed glioblastoma. JAMA Oncol. 2020;6:495–503. https://doi.org/10.1001/jamaoncol.2019.6143.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gulati S, Jakola AS, Nerland US, et al. The risk of getting worse: surgically acquired deficits, perioperative complications, and functional outcomes after primary resection of glioblastoma. World Neurosurg. 2011;76:572–9. https://doi.org/10.1016/j.wneu.2011.06.014.

    Article  PubMed  Google Scholar 

  17. Beez T, Boge K, Wager M, et al. Tolerance of awake surgery for glioma: a prospective European Low Grade Glioma Network multicenter study. Acta Neurochir. 2013;155:1301–8. https://doi.org/10.1007/s00701-013-1759-0.

    Article  PubMed  Google Scholar 

  18. Hervey-Jumper SL, Li J, Lau D, et al. Awake craniotomy to maximize glioma resection: methods and technical nuances over a 27-year period. J Neurosurg. 2015;123:325–39. https://doi.org/10.3171/2014.10.JNS141520.

    Article  PubMed  Google Scholar 

  19. Morshed RA, Young JS, Lee AT, et al. Clinical pearls and methods for intraoperative awake language mapping. Neurosurgery. 2020;89(2):143–53. https://doi.org/10.1093/neuros/nyaa440.

    Article  PubMed Central  Google Scholar 

  20. Riva M, Fava E, Gallucci M, et al. Monopolar high-frequency language mapping: can it help in the surgical management of gliomas? A comparative clinical study. J Neurosurg. 2016;124:1479–89. https://doi.org/10.3171/2015.4.JNS14333.

    Article  PubMed  Google Scholar 

  21. So EL, Alwaki A. A guide for cortical electrical stimulation mapping. J Clin Neurophysiol. 2018;35:98–105. https://doi.org/10.1097/WNP.0000000000000435.

    Article  PubMed  Google Scholar 

  22. Horsley V. Remarks on ten consecutive cases of operations upon the brain and cranial cavity to illustrate the details and safety of the method employed (what a table). Br Med J. 1887;1:863–5. https://doi.org/10.1136/bmj.1.1373.863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gogos AJ, Young JS, Morshed RA, et al. Awake glioma surgery: technical evolution and nuances. J Neuro-Oncol. 2020;147:515–24. https://doi.org/10.1007/s11060-020-03482-z.

    Article  CAS  Google Scholar 

  24. Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg. 1989;71:316–26. https://doi.org/10.3171/jns.1989.71.3.0316.

    Article  CAS  PubMed  Google Scholar 

  25. Penfield W, Boldrey E. Somatic motor and sensory representation in man. Brain. 1937:389–443.

    Google Scholar 

  26. Duffau H, Capelle L, Denvil D, et al. Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. J Neurosurg. 2003b;98:764–78. https://doi.org/10.3171/jns.2003.98.4.0764.

    Article  PubMed  Google Scholar 

  27. Duffau H. Brain mapping – from neural basis of cognition to surgical applications. 1st ed. Wien, Austria: Springer; 2011.

    Google Scholar 

  28. Serletis D, Bernstein M. Prospective study of awake craniotomy used routinely and nonselectively for supratentorial tumors. J Neurosurg. 2007;107:1–6. https://doi.org/10.3171/JNS-07/07/0001.

    Article  PubMed  Google Scholar 

  29. Chang SM, Parney IF, Huang W, et al. Patterns of care for adults with newly diagnosed malignant glioma. J Am Med Assoc. 2005;293:557–64. https://doi.org/10.1001/jama.293.5.557.

    Article  CAS  Google Scholar 

  30. De Witt Hamer PC, Robles SG, Zwinderman AH, et al. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol. 2012;30:2559–65. https://doi.org/10.1200/JCO.2011.38.4818.

    Article  PubMed  Google Scholar 

  31. Maldaun MV, Khawja SN, Levine NB, Rao G, Lang FF, Weinberg JS, Tummala S, Cowles CE, Ferson D, Nguyen AT, Sawaya R, Suki D, Prabhu SS. Awake craniotomy for gliomas in a high-field intraoperative magnetic resonance imaging suite: analysis of 42 cases. J Neurosurg. 2014;121(4):810–7. https://doi.org/10.3171/2014.6.JNS132285. Epub 2014 Aug 8. PMID: 25105702.

    Article  PubMed  Google Scholar 

  32. Roder C, Bisdas S, Ebner FH, et al. Maximizing the extent of resection and survival benefit of patients in glioblastoma surgery: high-field iMRI versus conventional and 5-ALA-assisted surgery. Eur J Surg Oncol. 2014;40:297–304. https://doi.org/10.1016/j.ejso.2013.11.022.

    Article  CAS  PubMed  Google Scholar 

  33. Orringer DA, Golby A, Jolesz F. Neuronavigation in the surgical management of brain tumors: current and future trends. Expert Rev Med Devices. 2012;9:491–500. https://doi.org/10.1586/erd.12.42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Southwell DG, Hervey-Jumper SL, Perry DW, Berger MS. Intraoperative mapping during repeat awake craniotomy reveals the functional plasticity of adult cortex. J Neurosurg. 2016;124:1460–9. https://doi.org/10.3171/2015.5.JNS142833.

    Article  PubMed  Google Scholar 

  35. Sawaya R, Prabhu SS. Impact of preoperative functional magnetic resonance imaging during awake craniotomy procedures for intraoperative guidance and complication avoidance. Stereotact Funct Neurosurg. 2014;92(5):315–22. https://doi.org/10.1159/000365224.

    Article  PubMed  Google Scholar 

  36. Lee AT, Faltermeier C, Morshed RA, et al. The impact of high functional connectivity network hub resection on language task performance in adult low- and high-grade glioma. J Neurosurg. 2021a;134:1102–12. https://doi.org/10.3171/2020.1.JNS192267.

    Article  Google Scholar 

  37. Nimsky C, Ganslandt O, Hastreiter P, et al. Intraoperative diffusion-tensor MR imaging: shifting of white matter tracts during neurosurgical procedures – initial experience. Radiology. 2005;234:218–25. https://doi.org/10.1148/radiol.2341031984.

    Article  PubMed  Google Scholar 

  38. Bilotta F, Stazi E, Titi L, et al. Diagnostic work up for language testing in patients undergoing awake craniotomy for brain lesions in language areas. Br J Neurosurg. 2014;28:363–7. https://doi.org/10.3109/02688697.2013.854313.

    Article  PubMed  Google Scholar 

  39. Acuña-Padilla Y, Salazar-Villanea M, Vindas-Montoya R, et al. Rol de la Neuropsicologia en la Evaluación y preparación del paciente candidato a craneotomía con paciente despierto. Role of neuropsychology in the evaluation and preparation of the patient who is a candidate for craniotomy with an awake patient O papel da neuropsicologia na avaliação e preparação do paciente candidato a craniotomia em pacientes acordados. Cuad Neuropsicol Panam J Neuropsychol. 2020;14:56–64. https://doi.org/10.7714/CNPS/14.1.207.

    Article  Google Scholar 

  40. Verst SM, de Castro I, Scappini-Junior W, et al. Methodology for creating and validating object naming and semantic tests used by Verst-Maldaun language assessment during awake craniotomies. Clin Neurol Neurosurg. 2021;202:106485. https://doi.org/10.1016/j.clineuro.2021.106485.

    Article  PubMed  Google Scholar 

  41. Chang EF, Raygor KP, Berger MS. Contemporary model of language organization: an overview for neurosurgeons. J Neurosurg. 2015;122:250–61. https://doi.org/10.3171/2014.10.JNS132647.Disclosure.

    Article  PubMed  Google Scholar 

  42. Simon MV. Intraoperative neurophysiology – a comprehensive guide to monitoring and mapping. 2nd ed. New York: Demos Medical Publishing; 2019.

    Google Scholar 

  43. Ritaccio AL, Brunner P, Schalk G. Electrical stimulation mapping of the brain: basic principles and emerging alternatives. J Clin Neurophysiol. 2018;35:86–97. https://doi.org/10.1097/WNP.0000000000000440.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Catani M, de Schotten MT. Atlas of human brain connections. 1st ed. Oxford: Oxford University Press; 2012.

    Book  Google Scholar 

  45. Duffau H, Moritz-Gasser S, Mandonnet E. A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang. 2014;131:1–10. https://doi.org/10.1016/j.bandl.2013.05.011.

    Article  PubMed  Google Scholar 

  46. Mandonnet E, Sarubbo S, Duffau H. Proposal of an optimized strategy for intraoperative testing of speech and language during awake mapping. Neurosurg Rev. 2017;40:29–35. https://doi.org/10.1007/s10143-016-0723-x.

    Article  PubMed  Google Scholar 

  47. Szelényi A, Bello L, Duffau H, et al. Intraoperative electrical stimulation in awake craniotomy: methodological aspects of current practice. Neurosurg Focus. 2010;28:E7. https://doi.org/10.3171/2009.12.FOCUS09237.

    Article  PubMed  Google Scholar 

  48. Ojemann GA. Mapping of neuropsychological language parameters at surgery. Int Anesthesiol Clin. 1986;24:115–31. https://doi.org/10.1097/00004311-198602430-00011.

    Article  CAS  PubMed  Google Scholar 

  49. Taniguchi M, Cedzich C, Taniguchi M, et al. Modification of cortical stimulation for motor evoked potentials under general anesthesia. Neurosurgery. 1993;32:219–26. https://doi.org/10.1227/00006123-199302000-00011.

    Article  CAS  PubMed  Google Scholar 

  50. Kombos T, Süss O. Neurophysiological basis of direct cortical stimulation and applied neuroanatomy of the motor cortex: a review. Neurosurg Focus. 2009;27:E3. https://doi.org/10.3171/2009.8.FOCUS09141.

    Article  PubMed  Google Scholar 

  51. Deletis V, Isgum V, Amassian VE. Neurophysiological mechanisms underlying motor evoked potentials in anesthetized humans. Part 1. Recovery time of corticospinal tract direct waves elicited by pairs of transcranial electrical stimuli. Clin Neurophysiol. 2001a;112:438–44.

    Article  CAS  PubMed  Google Scholar 

  52. Deletis V, Rodi Z, Amassian VE. Neurophysiological mechanisms underlying motor evoked potentials in anesthetized humans. Part 2. Relationship between epidurally and muscle recorded MEPs in man. Clin Neurophysiol. 2001b;112:445–52.

    Article  CAS  PubMed  Google Scholar 

  53. Szentagothai-Schimert J. Die Bedeutung des Faserkalibers und der Markscheidendicke im Zentralnervensystem. Z Fuer Anat Entwicklungsgeschichte. 1942;111:201–23. https://doi.org/10.1007/BF00538084.

    Article  Google Scholar 

  54. Tomasch J. Size, distribution, and number of fibres in the human corpus callosum. Anat Rec. 1954;119:119–35. https://doi.org/10.1002/ar.1091190109.

    Article  CAS  PubMed  Google Scholar 

  55. Li L, Velumian AA, Samoilova M, Fehlings MG. A novel approach for studying the physiology and pathophysiology of myelinated and non-myelinated axons in the CNS white matter. PLoS One. 2016a;11:e0165637. https://doi.org/10.1371/journal.pone.0165637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ranck JB. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 1975;98:417–40. https://doi.org/10.1016/0006-8993(75)90364-9.

    Article  PubMed  Google Scholar 

  57. Abalkhail TM, MacDonald DB, AlThubaiti I, et al. Intraoperative direct cortical stimulation motor evoked potentials: stimulus parameter recommendations based on rheobase and chronaxie. Clin Neurophysiol. 2017;128:2300–8. https://doi.org/10.1016/j.clinph.2017.09.005.

    Article  PubMed  Google Scholar 

  58. Axelson HW, Hesselager G, Flink R. Successful localization of the Broca area with short-train pulses instead of ‘Penfield’ stimulation. Seizure. 2009;18:374–5. https://doi.org/10.1016/j.seizure.2009.01.005.

    Article  PubMed  Google Scholar 

  59. Verst SM, de Aguiar PHP, Joaquim MAS, et al. Monopolar 250–500 Hz language mapping: results of 41 patients. Clin Neurophysiol Pract. 2019;4:1–8. https://doi.org/10.1016/j.cnp.2018.11.002.

    Article  CAS  PubMed  Google Scholar 

  60. Puglisi G, Howells H, Sciortino T, et al. Frontal pathways in cognitive control: direct evidence from intraoperative stimulation and diffusion tractography. Brain. 2019;142:2451–65. https://doi.org/10.1093/brain/awz178.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Desmurget M, Richard N, Beuriat P-A, et al. Selective inhibition of volitional hand movements after stimulation of the dorsoposterior parietal cortex in humans. Curr Biol. 2018;28:3303–3309.e3. https://doi.org/10.1016/j.cub.2018.08.027.

    Article  CAS  PubMed  Google Scholar 

  62. Puglisi G, Sciortino T, Rossi M, et al. Preserving executive functions in nondominant frontal lobe glioma surgery: an intraoperative tool. J Neurosurg. 2018;131:474–80. https://doi.org/10.3171/2018.4.JNS18393.

    Article  PubMed  Google Scholar 

  63. Baldissera F, Lundberg A, Udo M. Stimulation of pre- and postsynaptic elements in the red nucleus. Exp Brain Res. 1972;15 https://doi.org/10.1007/BF00235579.

  64. Hongo T, Jankowska E, Lundberg A. The rubrospinal tract. I. Effects on alpha-motoneurons innervating hindlimb muscles in cats. Exp Brain Res. 1969;7 https://doi.org/10.1007/BF00237320.

  65. Rudin DO, Eisenman G. The action potential of spinal axons in vitro. J Gen Physiol. 1954;37:505–38. https://doi.org/10.1085/jgp.37.4.505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Picht T, Kombos T, Gramm HJ, et al. Multimodal protocol for awake craniotomy in language cortex tumour surgery. Acta Neurochir. 2006;148:127–38. https://doi.org/10.1007/s00701-005-0706-0.

    Article  CAS  PubMed  Google Scholar 

  67. Jayakar P. Cortical electrical stimulation mapping: special considerations in children. J Clin Neurophysiol. 2018;35:106–9. https://doi.org/10.1097/WNP.0000000000000451.

    Article  PubMed  Google Scholar 

  68. MacDonald DB. Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol. 2002;19:416–29. https://doi.org/10.1097/00004691-200210000-00005.

    Article  PubMed  Google Scholar 

  69. MacDonald DB, Skinner S, Shils J, Yingling C. Intraoperative motor evoked potential monitoring – a position statement by the American Society of Neurophysiological Monitoring. Clin Neurophysiol. 2013;124:2291–316. https://doi.org/10.1016/j.clinph.2013.07.025.

    Article  CAS  PubMed  Google Scholar 

  70. Szelényi A, Kothbauer KF, Deletis V. Transcranial electric stimulation for intraoperative motor evoked potential monitoring: stimulation parameters and electrode montages. Clin Neurophysiol. 2007;118:1586–95. https://doi.org/10.1016/j.clinph.2007.04.008.

    Article  PubMed  Google Scholar 

  71. Ojemann GA, Whitaker HA. Language localization and variability. Brain Lang. 1978;6:239–60. https://doi.org/10.1016/0093-934X(78)90061-5.

    Article  CAS  PubMed  Google Scholar 

  72. Pereira LCM, Oliveira KM, L’Abbate GL, et al. Outcome of fully awake craniotomy for lesions near the eloquent cortex: analysis of a prospective surgical series of 79 supratentorial primary brain tumors with long follow-up. Acta Neurochir. 2009;151:1215–30. https://doi.org/10.1007/s00701-009-0363-9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Electronic Supplementary Material

What is this + mapping (MP4 10642 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verst, S.M., Ohy, J., Formentin, C., Maldaun, M.V.C. (2022). Awake Surgery: Performing an Awake Craniotomy. In: Verst, S.M., Barros, M.R., Maldaun, M.V.C. (eds) Intraoperative Monitoring. Springer, Cham. https://doi.org/10.1007/978-3-030-95730-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95730-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95729-2

  • Online ISBN: 978-3-030-95730-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics