Skip to main content

Analytical Challenges in the Ecotoxicology of Emerging Environmental Pollutants

  • Reference work entry
  • First Online:
Handbook of Bioanalytics

Abstract

Among the wide variety of chemicals that are nowadays classified as new emerging pollutants, pharmaceuticals, microplastics, and ionic liquids have received special attention in this chapter. The latter should be more specifically named potential future environmental pollutants, the presence of which in the environment may be of great concern due to their wide range of possible uses in various sectors. Therefore, in this chapter the state of knowledge on their potential sources, fate, and possible effects have been summarized. Due to the still insufficient knowledge of the risks these chemicals pose to environmental organisms and human health, particular attention was paid to problems in their ecotoxicological studies. The need to combine chemical analysis with an ecotoxicological test was described in order to obtain more reliable results regarding their possible effects. For this purpose the existing analytical challenges have been reviewed and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cortés, J., Cobo, M., González, C. M., Gómez, C. D., Abalos, M., & Aristizábal, B. H. (2016). Environmental variation of PCDD/fs and dl-PCBs in two tropical Andean Colombian cities using passive samplers. Science of the Total Environment, 568, 614–623.

    PubMed  Google Scholar 

  2. Česen, M., Heath, D., Krivec, M., Košmrlj, J., Kosjek, T., & Heath, E. (2018). Seasonal and spatial variations in the occurrence, mass loadings and removal of compounds of emerging concern in the Slovene aqueous environment and environmental risk assessment. Environmental Pollution, 242, 143–154.

    Article  PubMed  CAS  Google Scholar 

  3. Richardson, S. D., & Terner, T. A. (2011). Water analysis: Emerging contaminants and current issues. Analytical Chemistry, 83, 4614–4648.

    Article  CAS  PubMed  Google Scholar 

  4. Li, W. C. (2014). Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environmental Pollution, 187, 193–201.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, Z., Hibberd, A., & Zhou, J. L. (2008). Analysis of emerging contaminants in sewage effluent and river water, comparison between spot and passive sampling. Analytica Chimica Acta, 607, 37–44.

    Article  CAS  PubMed  Google Scholar 

  6. Petrie, B., Barden, R., & Kasprzyk-Hordern, B. (2014). A review on emerging contaminants in wastewaters and the environment, current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72, 3–27.

    Article  PubMed  CAS  Google Scholar 

  7. Wilkinson, J., Hooda, P. S., Barker, J., Barton, S., & Swinden, J. (2017). Occurrence, fate and transformation of emerging contaminants in water, an overarching review of the field. Environmental Pollution, 231, 954–970.

    Article  CAS  PubMed  Google Scholar 

  8. Bottoni, P., Caroli, S., & Caracciolo, A. B. (2010). Pharmaceuticals as priority water contaminants. Toxicological and Environmental Chemistry, 92, 549–565.

    Article  CAS  Google Scholar 

  9. Czerwiński, J., Kłonica, A., & Ozonek, J. (2015). Endocrine disrupting compounds (EDCs) in the aquatic environment and methods of their removal. Journal of Civil Engineering, Environment and Architecture, XXXII, 27–42.

    Article  Google Scholar 

  10. Barra, C. A., Topp, E., & Grenni, P. (2015). Pharmaceuticals in the environment, biodegradation and effects on natural microbial communities. A review. Journal of Pharmaceutical and Biomedical Analysis, 106, 25–36.

    Article  CAS  Google Scholar 

  11. Desbiolles, F., Malleret, L., Tiliacos, C., Wong-Wah-Chung, P., & Laffont-Schwobb, I. (2018). Occurrence and ecotoxicological assessment of pharmaceuticals, is there a risk for the Mediterranean aquatic environment? Sci Total Environ, 639, 1334–1348.

    Article  CAS  PubMed  Google Scholar 

  12. Cardoso, O., Porcher, J. M., & Sanchez, W. (2014). Factory-discharged pharmaceuticals could be a relevant source of aquatic environment contamination, review of evidence and need for knowledge. Chemosphere, 115, 20–30.

    Article  CAS  PubMed  Google Scholar 

  13. Miller, T. H., Bury, N. R., Owen, S. F., MacRae, J. I., & Barron, L. P. (2018). A review of the pharmaceutical exposome in aquatic fauna. Environmental Pollution, 239, 129–146.

    Article  CAS  PubMed  Google Scholar 

  14. Caban, M., Michalak, A., & Kumirska, J. (2012). Methods of separation and determination of β-blockers and β-agonist residues in environmental samples. Camera Separatoria, 4(1), 61–79.

    Google Scholar 

  15. Godoy, A. A., & Kummrow, F. (2017). What do we know about the ecotoxicology of pharmaceutical and personal care product mixtures? A critical review. Critical Reviews in Environmental Science and Technology, 47, 1453–1496.

    Article  Google Scholar 

  16. Mezzelani, M., Gorbi, S., & Regoli, F. (2018). Pharmaceuticals in the aquatic environments, evidence of emerged threat and future challenges for marine organisms. Marine Environmental Research, 140, 41–60.

    Article  CAS  PubMed  Google Scholar 

  17. Kunzmann, A., Andersson, B., Thurnherr, T., Krug, H., Scheynius, A., & Fadeel, B. (2011). Toxicology of engineered nanomaterials, focus on biocompatibility, biodistribution and biodegradation. Biochimica et Biophysica Acta – General Subjects, 1810, 361–373.

    Article  CAS  Google Scholar 

  18. García-Galán, M. J., Silvia, D.-C. M., & Barceló, D. (2009). Combining chemical analysis and ecotoxicity to determine environmental exposure and to assess risk from sulfonamides. TrAC Trends in Analytical Chemistry, 28, 804–819.

    Article  CAS  Google Scholar 

  19. Puckowski, A., Mioduszewska, K., Łukaszewicz, P., Borecka, M., Caban, M., Maszkowska, J., & Stepnowski, P. (2016). Bioaccumulation and analytics of pharmaceutical residues in the environment. A review. Journal of Pharmaceutical and Biomedical Analysis, 127, 232–255.

    Article  CAS  PubMed  Google Scholar 

  20. Białk-Bielińska, A., Kumirska, J., Borecka, M., Caban, M., Paszkiewicz, M., Pazdro, K., & Stepnowski, P. (2016). Selected analytical challenges in the determination of pharmaceuticals in drinking/marine waters and soil/sediment samples. Journal of Pharmaceutical and Biomedical Analysis, 121, 271–296.

    Article  PubMed  CAS  Google Scholar 

  21. Borecka, M., Białk-Bielińska, A., Siedlewicz, G., Kornowska, K., Kumirska, J., Stepnowski, P., & Pazdro, K. (2013). A new approach for the estimation of expanded uncertainty of results of an analytical method developed for determining antibiotics in seawater using solid-phase extraction disks and liquid chromatography coupled with tandem mass spectrometry technique. Journal of Chromatography. A, 1304, 138–146.

    Article  CAS  PubMed  Google Scholar 

  22. Santoke, H., & Cooper, W. J. (2017). Environmental photochemical fate of selected pharmaceutical compounds in natural and reconstituted Suwannee River water, role of reactive species in indirect photolysis. Sci Total Environ, 580, 626–631.

    Article  CAS  PubMed  Google Scholar 

  23. Díaz-Cruz, M. S., López De Alda, M. J., & Barceló, D. (2003). Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. TrAC Trends in Analytical Chemistry, 22, 340–351.

    Article  CAS  Google Scholar 

  24. Chiappe, C., & Pieraccini, D. (2005). Ionic liquids, solvent properties and organic reactivity. Journal of Physical Organic Chemistry, 18, 275–297.

    Article  CAS  Google Scholar 

  25. Frade, R. F., & Afonso, C. A. (2010). Impact of ionic liquids in environment and humans, an overview. Human & Experimental Toxicology, 29, 1038–1054.

    Article  CAS  Google Scholar 

  26. Koel, M. (2008). Ionic liquids in chemical analysis. CRC Press Tailor & Francis Group.

    Book  Google Scholar 

  27. Laus, G., Bentivoglio, G., Schottenberger, H., Kahlenberg, V., Kopacka, H., Röder, T., & Sixta, H. (2005). Ionic liquids, current developments, potential and drawbacks for industrial applications. Lenzinger Berichte, 84, 71–85.

    CAS  Google Scholar 

  28. Plechkova, N. V., & Seddon, K. R. (2008). Applications of ionic liquids in the chemical industry. Chemical Society Reviews, 37, 123–150.

    Article  CAS  PubMed  Google Scholar 

  29. Jos-Alberto, M.-H., & Jorge, A. (2011). Current knowledge and potential applications of ionic liquids in the petroleum industry. In Ionic liquids: Applications and perspectives. InTech.

    Google Scholar 

  30. Petkovic, M., Seddon, K. R., Rebelo, L. P. N., & Pereira, C. S. (2011). Ionic liquids, a pathway to environmental acceptability. Chemical Society Reviews, 40, 1383–1403.

    Article  CAS  PubMed  Google Scholar 

  31. Jastorff, B., Störmann, R., Ranke, J., et al. (2003). How hazardous are ionic liquids? Structure-activity relationships and biological testing as important elements for sustainability evaluation. Green Chemistry, 5, 136–142.

    Article  CAS  Google Scholar 

  32. Bernot, R. J., Brueseke, M. A., Evans-White, M. A., & Lamberti, G. A. (2005). Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna. Environmental Toxicology and Chemistry, 24, 87–92.

    Article  CAS  PubMed  Google Scholar 

  33. Cieniecka-Rosłonkiewicz, A., Pernak, J., Kubis-Feder, J., Ramani, A., Robertson, A. J., & Seddon, K. R. (2005). Synthesis, anti-microbial activities and anti-electrostatic properties of phosphonium-based ionic liquids. Green Chemistry, 7, 855–862.

    Article  CAS  Google Scholar 

  34. Cornmell, R. J., Winder, C. L., Tiddy, G. J. T., Goodacre, R., & Stephens, G. (2008). Accumulation of ionic liquids in Escherichia coli cells. Green Chemistry, 10(836–841), 2008.

    Google Scholar 

  35. Couling, D. J., Bernot, R. J., Docherty, K. M., Dixon, J. K., & Maginn, E. J. (2006). Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure-property relationship modelling. Green Chemistry, 8, 82–90.

    Article  CAS  Google Scholar 

  36. Wells, A. S., & Coombe, V. T. (2008). On the freshwater ecotoxicity and biodegradation properties of some common ionic liquids. Organic Process Research and Development, 10, 794–798.

    Article  CAS  Google Scholar 

  37. Cho, C. W., Jeon, Y. C., Pham, T. P. T., Vijayaraghavan, K., & Yun, Y. S. (2008). The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum. Ecotoxicology and Environmental Safety, 71, 166–171.

    Article  CAS  PubMed  Google Scholar 

  38. OECD. (2004). Test no. 202: Daphnia sp. acute immobilisation test, OECD guidelines for the testing of chemicals, section 2. OECD Publishing.

    Google Scholar 

  39. OECD. (2006). Test no. 221: Lemna sp. growth inhibition test, OECD guidelines for the testing of chemicals, section 2. OECD Publishing.

    Book  Google Scholar 

  40. PN-EN ISO 18187. (2018). Jakość gleby – Test kontaktowy dla próbek fazy stałej z wykorzystaniem aktywności dehydrogenaz Arthrobacter globiformis. 1–40 [eng: Soil quality – Contact test for solid samples using Arthrobacter globiformis dehydrogenases activity], Polish Standardization Committee, Warsaw.

    Google Scholar 

  41. Ohno H. (red.) (2005). Electrochemical aspects of ionic liquids. John Wiley & Sons.

    Google Scholar 

  42. Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62, 1596–1605.

    Article  CAS  PubMed  Google Scholar 

  43. Lebreton, L., Slat, B., Ferrari, F., Sainte-Rose, B., Aitken, J., Marthouse, R., Hajbane, S., Cunsolo, S., Schwarz, A., Levivier, A., Noble, K., Debeljak, P., Maral, H., Schoeneich-Argent, R., Brambini, R., & Reisser, J. (2018). Evidence that the great Pacific garbage patch is rapidly accumulating plastic. Scientific Reports, 8, 1–15.

    Article  CAS  Google Scholar 

  44. Plastics Europe Market Research Group (PEMRG)/Consultic Marketing & Industrieberatung GmbH., Plastics – the Facts. (2017). Assoc Plast Manuf, 16.

    Google Scholar 

  45. GESAMP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection. (2015). Sources, fate and effects of microplastics in the marine environment, a global assessment. Reports and Studies GESAMP, 90.

    Google Scholar 

  46. Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of microplastic on shorelines worldwide, sources and sinks. Environmental Science & Technology, 45, 9175–9179.

    Article  CAS  Google Scholar 

  47. Wang, J., Tan, Z., Peng, J., Qui, Q., & Li, M. (2016). The behaviors of microplastics in the marine environment. Marine Environmental Research, 113, 7–17.

    Article  CAS  PubMed  Google Scholar 

  48. Bakir, A., Rowland, S. J., & Thompson, R. C. (2014). Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environmental Pollution, 185, 16–23.

    Article  CAS  PubMed  Google Scholar 

  49. Cole M., Lindeque P., Halsband C., & Galloway T.S. (2011). Microplastics as contaminants in the marine environment, A review. Marine Pollution Bulletin, 62, 2588–2597.

    Google Scholar 

  50. Zarfl, C. (2019). Promising techniques and open challenges for microplastic identification and quantification in environmental matrices. Analytical and Bioanalytical Chemistry, 411, 3743–3756.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Lis .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pazda, M., Lis, H., Puckowski, A., Białk-Bielińska, A., Stepnowski, P. (2022). Analytical Challenges in the Ecotoxicology of Emerging Environmental Pollutants. In: Buszewski, B., Baranowska, I. (eds) Handbook of Bioanalytics. Springer, Cham. https://doi.org/10.1007/978-3-030-95660-8_41

Download citation

Publish with us

Policies and ethics