Skip to main content

A Preliminary Study of RF Propagation for High Data Rate Brain Telemetry

  • Conference paper
  • First Online:
Body Area Networks. Smart IoT and Big Data for Intelligent Health Management (BODYNETS 2021)

Abstract

This paper presents the preliminary results of a study on the radio frequency (RF) propagation inside the human skull at several Industrial, Scientific and Medical (ISM) and ultrawideband UWB frequencies. These frequency bands are considered as possible candidates for high data rate wireless brain telemetry. The study is conducted using a high-resolution 3D computational model of the human head. Power flow analysis is conducted to visualize propagation inside the brain for two different on-body antenna locations. Furthermore, channel attenuation between an on-body directional mini-horn antenna and an implant antenna at different depths inside the brain is evaluated. It is observed that radio frequency propagation at 914 MHz sufficiently covers the whole volume of the brain. The coverage reduces at higher frequencies, specially above 3.1 GHz. The objective of this comparative analysis is to provide some insight on the applicability of these frequencies for high data rate brain telemetry or various monitoring, and diagnostic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Commercial products mentioned in this paper are merely intended to foster understanding. Their identification does not imply recommendation or endorsement by National Institute of Standards & Technology.

References

  1. Chavarriaga, R., Cary, C., Contreras-Videl, J.L., McKinney, Z., Bianchi, L.: Standardization of neurotechnology for brain-machine interfacing: state of the art and recommendations. IEEE Open J. Eng. Med. Biol. 2, 71–73 (2021)

    Article  Google Scholar 

  2. Song, Z., et al.: Evaluation and diagnosis of brain diseases based on non-invasive BCI. In: 2021 9th International Winter Conference on Brain-Computer Interface (BCI) (2021)

    Google Scholar 

  3. Song, L., Rahmat-Samii, Y.: An end-to-end implanted brain-machine interface antenna system performance characterizations and development. IEEE Trans. Antennas Propag. 65(7), 3399–3408 (2017). https://doi.org/10.1109/TAP.2017.2700163

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, W., Lee, C.W.L., Kiourti, A., Volakis, J.L.: A multi-channel passive brain implant for wireless neuropotential monitoring. IEEE J. Electromagnet. RF Microwaves Med. Biol. 2(4), 262–269 (2018)

    Article  Google Scholar 

  5. Roldan, M., et al.: Non-invasive techniques for multimodal monitoring in traumatic brain injury: systematic review and meta-analysis. J. Neurotrauma 37(23), 2445–2453 (2020)

    Article  Google Scholar 

  6. Manoufali, M., Bialkowski, K., Mobashsher, A.T., Mohammed, B., Abbosh, A.: In situ near-field path loss and data communication link for brain implantable medical devices using software-defined radio. IEEE Trans. Antennas Propag. 68(9), 6787–6799 (2020)

    Article  Google Scholar 

  7. Albert, B., Zhang, J., Noyvirt, A., Setchi, R., Sjaaheim, H., Velikova, S., et al.: Automatic EEG processing for the early diagnosis of traumatic brain injury. In: 2016 World Automation Congress (WAC), pp. 1–6, July 2016

    Google Scholar 

  8. Evensen, K.B., Eide, P.: Measuring intracranial pressure by invasive, less invasive and non-invasive means, limitations and avenues for improvement. Fluids Barrierd CNS 17(1), 34 (2020)

    Article  Google Scholar 

  9. Imaduddin, S.M., Fanelli, A., Vonberg, F., Tasker, R.C., Heldt, T.: Pseudo-Bayesian model-based noninvasive intracranial pressure estimation and tracking. IEEE Trans. Biomed. Eng. 67(6), 1604–1615 (2019)

    Article  Google Scholar 

  10. Barone, D.G., Czosnyka, M.: Brain monitoring: do we need a hole? An update on invasive and noninvasive brain monitoring modalities. Sci. World J. (2014)

    Google Scholar 

  11. Särestöniemi, M., et al.: Detection of brain hemorrhage in white matter using analysis of radio channel characteristics. In: Alam, M.M., Hämäläinen, M., Mucchi, L., Niazi, I.K., Le Moullec, Y. (eds.) BODYNETS 2020. LNICSSITE, vol. 330, pp. 34–45. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64991-3_3

    Chapter  Google Scholar 

  12. Hakala, J., Kilpijärvi, J., Särestöniemi, M., Hämäläinen, M., Myllymäki, S., Myllylä, T.: Microwave sensing of brain water – a simulation and experimental study using human brain models. IEEE Access 8, 111303–111315 (2020). https://doi.org/10.1109/ACCESS.2020.3001867

    Article  Google Scholar 

  13. Patel, P., Sarkar, M., Nagaraj, S.: Wireless channel model of ultra wideband radio signals for implantable biomedical devices. Health Technol. 8(1–2), 97–110 (2017). https://doi.org/10.1007/s12553-017-0199-x

    Article  Google Scholar 

  14. Särestöniemi, M., Pomalaza-Raez, C., Sayrafian, K., Iinatti, J.: In-body propagation at ISM and UWB frequencies for abdominal monitoring applications. In: IoT Health Workshop, ICC Conference, Montreal, Canada (2021)

    Google Scholar 

  15. Dove, I.: Analysis of radio propagation inside the human body for in-body localization purposes. Master thesis, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Netherlands, August 2014

    Google Scholar 

  16. Teshome, A.K., Kibret, B., Lai, D.T.H.: A Review Of Implant Communication Technology In WBAN: progress and challenges. IEEE Rev. Biomed. Eng. 12, 88–99 (2019)

    Article  Google Scholar 

  17. Mohamed, M., Maiseli, B.J., Ai, Y., Mkocha, K., Al-Saman, A.: In-body sensor communication: trends and challenges. IEEE Electromagn. Compat. Mag. 10(2), 47–52 (2021)

    Article  Google Scholar 

  18. Aminzadeh, R., Thielens, A., Zhadobov, M., Martens, L., Joseph, W.: WBAN channel modeling for 900 MHz and 60 GHz communications. IEEE Trans. Antennas Propag. 69(7), 4083–4092 (2021)

    Article  Google Scholar 

  19. Hout, S., Chung, J.: Design and characterization of a miniaturized implantable antenna in a seven-layer brain phantom. IEEE Access 7, 162062–162069 (2019)

    Article  Google Scholar 

  20. Bahrami, H., Mirbozorgi, S.A., Ameli, R., Rusch, L.A., Gosselin, B.: Flexible, polarization-diverse UWB antennas for implantable neural recording systems. IEEE Trans. Biomed. Circ. Syst. 10(1), 38–48 (2016)

    Article  Google Scholar 

  21. Rana, B., Shim, J.-Y., Chung, J.-Y.: An implantable antenna with broadside radiation for a brain-machine interface. IEEE Sens. J. 19(20), 9200–9205 (2019)

    Article  Google Scholar 

  22. Nguyen, D., Seo, C.: An ultra-miniaturized antenna using loading circuit method for medical implant applications. IEEE Access 9, 111890–111898 (2021)

    Article  Google Scholar 

  23. Moradi, E., Björninen, T., Sydänheimo, L., Carmena, J.M., Rabaey, J.M., Ukkonen, L.: Measurement of wireless link for brain-machine interface systems using human-head equivalent liquid. IEEE Antennas Wirel. Propag. Lett. 12, 1307–1310 (2013)

    Article  Google Scholar 

  24. Bahrami, H., Mirbozorgi, S.A., Rusch, L.A., Gosselin, B.: Biological channel modeling and implantable UWB antenna design for neural recording systems. IEEE Trans. Biomed. Eng. 62(1), 88–98 (2015). https://doi.org/10.1109/TBME.2014.2339837

    Article  Google Scholar 

  25. Dassault Simulia CST Suite. https://www.3ds.com/

  26. Orfanidis, J.: Electromagnetic Waves and Antennas (2002). Revised 2016. http://www.ece.rutgers.edu/~orfanidi/ewa/

  27. https://www.itis.ethz.ch/virtual-population/tissue-properties/databaseM

  28. Blauert, J., Kiourti, A.: Bio-matched horn: a novel 1–9 GHz on-body antenna for low-loss biomedical telemetry with implants. IEEE Trans. Antennas Propag. 67(8), 5054–5062 (2019)

    Article  Google Scholar 

  29. Shang, J., Yu, Y.: An ultrawideband capsule antenna for biomedical applications. IEEE Antennas Wirel. Propag. Lett. 18(12), 2548–2551 (2019)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by Academy of Finland 6Genesis Flagship (grant 318927) and the European Union’s Horizon 2020 programme under the Marie Sklodowska-Curie grant agreement No. 872752. Mikko Linnanmäki from ExcellAnt is acknowledged for UWB capsule antenna’s redesign based in documentation given in [29]. Mikko Parkkila and Uzman Ali from Radientum is acknowledged for mini-horn antenna re-design based on documentation in [28].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariella Särestöniemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Särestöniemi, M., Pomalaza-Raez, C., Sayrafian, K., Myllylä, T., Iinatti, J. (2022). A Preliminary Study of RF Propagation for High Data Rate Brain Telemetry. In: Ur Rehman, M., Zoha, A. (eds) Body Area Networks. Smart IoT and Big Data for Intelligent Health Management. BODYNETS 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 420. Springer, Cham. https://doi.org/10.1007/978-3-030-95593-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95593-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95592-2

  • Online ISBN: 978-3-030-95593-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics