Skip to main content

Quantum Music, Quantum Arts and Their Perception

  • Chapter
  • First Online:
Quantum Computing in the Arts and Humanities

Abstract

The expression of human art, and supposedly sentient art in general, is modulated by the available rendition, receiving and communication techniques. The components or instruments of these techniques ultimately exhibit a physical, in particular, quantum layer, which in turn translates into physical and technological capacities to comprehend and utilize what is possible in our universe. In this sense, we can apply a sort of Church-Turing thesis to art, or at least to its rendition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • This, H. (2005). Modelling dishes and exploring culinary ‘precisions’: the two issues of molecular gastronomy. British Journal of Nutrition, 93, S139.

    Article  Google Scholar 

  • Putz, V., & Svozil, K. (2017). Quantum music. Soft Computing, 21, 1467. arXiv:1503.09045.

  • Svozil, K. (2016). Quantum hocus-pocus, Ethics in Science and Environmental Politics (ESEP). 16, 25. arXiv:1605.08569.

  • Mermin, D. N. (2007). Quantum Computer Science. Cambridge: Cambridge University Press.

    Google Scholar 

  • Fortnow, L. (2003). One complexity theorist’s view of quantum computing. Theoretical Computer Science, 292, 597.

    Article  MathSciNet  Google Scholar 

  • Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge: Cambridge University Press. 10th Anniversary Edition.

    Google Scholar 

  • Peres, A. (1978). Unperformed experiments have no results. American Journal of Physics, 46, 745.

    Article  Google Scholar 

  • Schrödinger, E. (1935). Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften, 23, 807.

    Article  Google Scholar 

  • Brukner, Č, & Zeilinger, A. (1999). Operationally invariant information in quantum measurements. Physical Review Letters, 83, 3354. quant-ph/0005084.

    Article  MathSciNet  Google Scholar 

  • Zeilinger, A. (1999). A foundational principle for quantum mechanics. Foundations of Physics, 29, 631.

    Article  MathSciNet  Google Scholar 

  • Brukner, Č., Zukowski, M., & Zeilinger, A. (2002). The essence of entanglement. arXiv:quant-ph/0106119, translated to Chinese by Qiang Zhang and Yond-de Zhang, New Advances in Physics (Journal of the Chinese Physical Society).

  • Dzhafarov, E. N., Cervantes, V. H., & Kujala, J. V. (2017). Contextuality in canonical systems of random variables. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375, 20160389. arXiv:1703.01252 .

  • Abramsky, S. (2018). Contextuality: At the borders of paradox. In E. Landry (Ed.) Categories for the Working Philosopher (pp. 262–285). Oxford University Press, Oxford, UK. arXiv:2011.04899.

  • Grangier, P. (2002). Contextual objectivity: a realistic interpretation of quantum mechanics. European Journal of Physics, 23, 331. arXiv:quant-ph/0012122.

    Article  Google Scholar 

  • Aufféves, A., Grangier, P. (2018). Extracontextuality and extravalence in quantum mechanics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376, 20170311. arXiv:1801.01398.

  • Auffèves, A., & Grangier, P. (2020). Deriving born’s rule from an inference to the best explanation. Foundations of Physics, 50, 1781. arXiv:1910.13738.

  • Grangier, P. (2020). Completing the quantum formalism in a contextually objective framework. arXiv:2003.03121.

  • Budroni, C., Cabello, A., Gühne, O., & Kleinmann, M. J. (2021). Quantum contextuality: Åke Larsson. arXiv:2102.13036 [quant-ph].

  • Specker, E. (1960). Die Logik nicht gleichzeitig entscheidbarer Aussagen. Dialectica, 14, 239. arXiv:1103.4537 .

  • Kochen, S., Specker, E. P. (1967). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics (now Indiana University Mathematics Journal), 17, 59.

    Google Scholar 

  • Svozil, K. (2021). Varieties of contextuality emphasizing (non)embeddability. arXiv:2103.06110.

  • Shannon, C. E. (1949). Bell System Technical Journal 27, 379 (1948), reprinted in C. E. Shannon and W. Weaver: The Mathematical Theory of Communication, University of Illinois Press, Urbana, Illinois.

    Google Scholar 

  • Reck, M., Zeilinger, A., Bernstein, H. J., & Bertani, P. (1994). Experimental realization of any discrete unitary operator. Physical Review Letters, 73, 58.

    Article  Google Scholar 

  • Zukowski, M., Zeilinger, A., & Horne, M. A. (1997). Realizable higher-dimensional two-particle entanglements via multiport beam splitters. Physical Review A, 55, 2564.

    Article  Google Scholar 

  • Glauber, R. J. (1986). Amplifiers, attenuators, and schrödinger’s cat. Annals of the New York Academy of Sciences, 480, 336.

    Article  MathSciNet  Google Scholar 

  • Schrödinger, E. (1995). The Interpretation of Quantum Mechanics. Dublin Seminars (1949-1955) and Other Unpublished Essays. Woodbridge, Connecticut: Ox Bow Press.

    Google Scholar 

  • von Neumann, J. (1932, 1996). Mathematische Grundlagen der Quantenmechanik, (2nd ed.). Berlin, Heidelberg: Springer, English translation in [54].

    Google Scholar 

  • Everett, H., III. (1957). Relative State formulation of quantum mechanics. Reviews of Modern Physics, 29, 454.

    Google Scholar 

  • Wigner, E. P. (1961, 1962, 1995) Remarks on the mind-body question. In I. J. Good (Ed.), The Scientist Speculates (pp. 284–302). London, New York, and Berlin: Heinemann, Basic Books, and Springer-Verlag.

    Google Scholar 

  • Everett, H., III. (2012). The Everett Interpretation of Quantum Mechanics: Collected Works 1955–1980 with Commentary, edited by J. A. Barrett & P. Byrne. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Schwinger, J. (1960). Unitary operators bases. Proceedings of the National Academy of Sciences (PNAS), 46, 570.

    Google Scholar 

  • Zeilinger, A. (2005). The message of the quantum. Nature, 438, 743.

    Article  Google Scholar 

  • Svozil, K. (2004). Quantum information via state partitions and the context translation principle. Journal of Modern Optics, 51, 811. arXiv:quant-ph/0308110.

    Article  MathSciNet  Google Scholar 

  • Peres, A. (1980). Can we undo quantum measurements? Physical Review D, 22, 879.

    Article  Google Scholar 

  • Scully, M. O., & Drühl, K. (1982). Quantum eraser: A proposed photon correlation experiment concerning observation and “delayed choice” in quantum mechanics. Physical Review A, 25, 2208.

    Article  Google Scholar 

  • Greenberger, D. M., & YaSin, A. (1989). “Haunted’’ measurements in quantum theory. Foundation of Physics, 19, 679.

    Article  Google Scholar 

  • Scully, M. O., Englert, B.-G., & Walther, H. (1991). Quantum optical tests of complementarity. Nature, 351, 111.

    Article  Google Scholar 

  • Zajonc, A. G., Wang, L. J., Zou, X. Y., & Mandel, L. (1991). Quantum eraser. Nature, 353, 507.

    Article  Google Scholar 

  • Kwiat, P. G., Steinberg, A. M., & Chiao, R. Y. (1992). Observation of a & #x201C;quantum eraser:â? a revival of coherence in a two-photon interference experiment. Physical Review A, 45, 7729.

    Article  Google Scholar 

  • Pfau, T., Spälter, S., Kurtsiefer, C., Ekstrom, C. R., & Mlynek, J. (1994). Loss of spatial coherence by a single spontaneous emission. Physical Review Letters, 73, 1223.

    Article  Google Scholar 

  • Chapman, M. S., Hammond, T. D., Lenef, A., Schmiedmayer, J., Rubenstein, R. A., Smith, E., & Pritchard, D. E. (1995). Photon scattering from atoms in an atom interferometer: Coherence lost and regained. Physical Review Letters, 75, 3783.

    Article  Google Scholar 

  • Herzog, T. J., Kwiat, P. G., Weinfurter, H., & Zeilinger, A. (1995). Complementarity and the quantum eraser. Physical Review Letters, 75, 3034.

    Article  Google Scholar 

  • Pauli, W. (1933). Die allgemeinen Prinzipien der Wellenmechanik. In H. Geiger & K. Scheel (Ed.), Handbuch der Physik (Vol. 24, p. 126). Berlin: Springer.

    Google Scholar 

  • Glauber, R. J. (1969). Quantum theory of coherence. In S. M. Kay & A. Maitland (Ed.), Quantum Optics: Proceedings of the Scottish Universities’ Summer School in Physics 1969. London: Academic Press.

    Google Scholar 

  • Glauber, R. J. (2007). Amplifiers, attenuators and Schrödingers cat. In Quantum Theory of Optical Coherence (pp. 537–576). Wiley-VCH Verlag GmbH & Co. KGaA.

    Google Scholar 

  • Weinberg, S. (1977). The search for unity: Notes for a history of quantum field theory. Daedalus, 106, 17.

    Google Scholar 

  • Schrödinger, E. (1924). Über den Ursprung der Empfindlichkeitskurven des Auges. Die Naturwissenschaften, 12, 925.

    Article  Google Scholar 

  • Schrödinger, E., Niall, K. K. (2017). Erwin Schrödinger’s Color Theory. Springer International Publishing.

    Google Scholar 

  • Hecht, S., Shlaer, S., & Pirenne, M. H. (1942). Energy, quanta, and vision. Journal of General Physiology, 25, 819.

    Article  Google Scholar 

  • Westheimer, G. (2016). History of physiological optics in the twentieth century, in Handbook of Visual Optics: Fundamentals and Eye Optics, Volume One (Chap. 1, pp. 1–10). CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Tinsley, J. N., Molodtsov, M. I., Prevedel, R., Wartmann, D., Espigulé-Pons, J., Lauwers, M., & Vaziri, A. (2016). Direct detection of a single photon by humans. Nature Communications, 7. https://doi.org/10.1038/ncomms12172.

  • Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934–1990), 400, 97.

    Google Scholar 

  • Musil, R. (1906). Die Verwirrungen des Zöglings Törleß. Wien und Leipzig: Wiener Verlag, project Gutenberg ebook # 3471.

    Google Scholar 

  • von Neumann, J. (1955). Mathematical Foundations of Quantum Mechanics. Princeton, NJ: Princeton University Press, German original in [27].

    Google Scholar 

Download references

Acknowledgements

This research was funded in whole, or in part, by the Austrian Science Fund (FWF), Project No. I 4579-N. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volkmar Putz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Putz, V., Svozil, K. (2022). Quantum Music, Quantum Arts and Their Perception. In: Miranda, E.R. (eds) Quantum Computing in the Arts and Humanities. Springer, Cham. https://doi.org/10.1007/978-3-030-95538-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95538-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95537-3

  • Online ISBN: 978-3-030-95538-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics