Skip to main content

Geo-ML Enabled Above Ground Biomass and Carbon Estimation for Urban Forests

  • Conference paper
  • First Online:
Advanced Computing (IACC 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1528))

Included in the following conference series:

Abstract

The study of the carbon cycle and climate change in the worldwide terrestrial ecosystem relies heavily on forest aboveground biomass (AGB). Remote sensing based AGB estimate is an excellent solution for regional scale. Urban trees play an important part in carbon cycling because they sequester carbon. Above Ground Biomass (AGB) quantification is thus critical for better understanding the function of urban trees in carbon sequestration. This work was carried out for geospatial modelling of AGB and carbon with the aid of field-based data and their correlations with spectra and textural variables derived from Landsat-8 OLI data for urban forests in Jodhpur city, Rajasthan, India, using a Random Forest (RF) based machine learning (ML) approach. A total of 198 variables were retrieved from the satellite image including bands, Vegetation Indices (VIs), linearly transformed variables and Grey Level Co-occurrence textures (GLCM) were taken as independent input variables for RF regression. The RF regression model has been evaluated independently for spectral and texture variables and their integration together. Best prediction accuracy noted for the integrated model. Using RF regression a Boruta feature selection method has been applied to extract important variables from the list of variables to get a more accurate prediction. A total number of 18 variables have been identified as most important for the integrated model. Highest considerable accuracy given by the integrated model and values noted were R2 of 0.83, MAE of 11.86 t/ha and RMSE of 16.22 t/ha while for individual bands R2 value of 0.69, MAE of 16.37 t/ha and RMSE of 22.20 t/ha. For indices R2 value noted was 0.81, MAE value of 13.17 t/ha, RMSE of 17.27 t/ha. For individual textures R2 of 0.71, MAE value of 16.56 t/ha and RMSE of 21.67 t/ha have been noted. Results of the study indicate the potential efficiency of RF regression algorithm for modelling AGB and assessing the role of urban forests for carbon sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Davis, L.S., Johnson, K.N., Bettinger, P.E.T.: Forest Management: To Sustain Ecological, Economic, and Social Values (2001)

    Google Scholar 

  2. Carle, J., Holmgren, P.: Definitions related to planted forests. In: UNFF Intersessional Expert Meeting International Steering Group on “The Role of Planted Forests in Sustainable Forest Management. Maximising Planted Forests’ Contribution to SFM”, Wellington, New Zealand (2003). http://www.fao.org/forestry/5248-0d4f50dd8626f4bd6248009fc68f892fb.pdf

  3. Carle, J., Vuorinen, P.: Del Lungo a, status and trends in global forest plantation development. For. Prod. J. 52(7–8), 12 (2002)

    Google Scholar 

  4. Kangas, A., Maltamo, M.: Forest Inventory: Methodology and Applications (Managing Forest Ecosystem). Springer, Dordrecht (2006)

    Book  Google Scholar 

  5. Zhang, K., Hu, B.: Individual urban tree species classification using very high spatial resolution airborne multi-spectral imagery using longitudinal profiles. Remote Sens. 4(6), 1741–1757 (2012). https://doi.org/10.3390/rs4061741

    Article  Google Scholar 

  6. Karsenty, A., Blanco, C., Dufour, T.: Forest and climate change. In: Instruments Related to the United Nations Framework Convention on Climate Change and Their Potential for Sustainable Forest Management in Africa, CIRAD, FAO (2003). ftp://ftp.fao.org/docrep/fao/011/ac836e/ac836e00.pdf

  7. Sarker, L.R., Nichol, J.E.: Improved forest biomass estimates using ALOS AVNIR-2 texture indices. Remote Sens. Environ. 115(4), 968–977 (2011). https://doi.org/10.1016/j.rse.2010.11.010

    Article  Google Scholar 

  8. Lottering, R., Mutanga, O.: Estimating the road edge effect on adjacent eucalyptus Grandis Forests in KwaZulu-Natal, South Africa, Using Texture Measures and an Artificial Neural Network. J. Spat. Sci. 57, 153–173 (2012). https://doi.org/10.1080/14498596.2012.733617

    Article  Google Scholar 

  9. Barbosa, J.M., Melendez-Pastor, I., Navarro-Pedreño, J., Bitencourt, M.D.: Remotely sensed biomass over steep slopes: an evaluation among successional stands of the Atlantic Forest, Brazil. ISPRS J. Photogram. Remote Sens. 88, 91–100 (2014). https://doi.org/10.1016/j.isprsjprs.2013.11.019

    Article  Google Scholar 

  10. Bastin, J.-F., et al.: Aboveground biomass mapping of African forest mosaics using canopy texture analysis: toward a regional approach. Ecol. Appl. 24(8), 1984–2001 (2014). https://doi.org/10.1890/13-1574.1

    Article  Google Scholar 

  11. Dube, T., Mutanga, O., Elhadi, A., Ismail, R.: Intra-and-inter species biomass prediction in a plantation forest: testing the utility of high spatial resolution Spaceborne multispectral RapidEye sensor and advanced machine learning algorithms. Sensors 14(8), 15348–15370 (2014). https://doi.org/10.3390/s140815348

    Article  Google Scholar 

  12. Dube, T., Mutanga, O.: Evaluating the utility of the medium-spatial resolution landsat 8 multispectral sensor in quantifying aboveground biomass in UMgeni Catchment, South Africa. ISPRS J. Photogram. Remote Sens. 101, 36–46 (2015). https://doi.org/10.1016/j.isprsjprs.2014.11.001

    Article  Google Scholar 

  13. Wang, G., et al.: Uncertainties of mapping aboveground forest carbon due to plot locationsusing national forest inventory plot and remotely sensed data. Scand. J. For. Res. 26, 360–373 (2011)

    Article  Google Scholar 

  14. Lu, D.: The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 27(7), 1297–1328 (2006). https://doi.org/10.1080/01431160500486732

    Article  Google Scholar 

  15. Yang, C., Huang, H., Wang, S.: Estimation of tropical forest biomass using Landsat TM imagery and permanent plot data in Xishuangbanna, China. Int. J. Remote Sens. 32(20), 5741–5756 (2011). https://doi.org/10.1080/01431161.2010.507677

    Article  Google Scholar 

  16. Tian, X., et al.: Estimating montane forest above-ground biomass in the upper reaches of the Heihe River Basin using Landsat-TM data. Int. J. Remote Sens. 35(21), 7339–7362 (2014). https://doi.org/10.1080/01431161.2014.967888

    Article  Google Scholar 

  17. Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M., Rigol-Sanchez, J.P.: An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogram. Remote Sens. 67, 93–104 (2012). https://doi.org/10.1016/j.isprsjprs.2011.11.002

    Article  Google Scholar 

  18. Lawrence, R.L., Wood, S.D., Sheley, R.L.: Mapping invasive plants using hyperspectral imagery and Breiman cutler classifications (RandomForest). Remote Sens. Environ. 100(3), 356–362 (2006). https://doi.org/10.1016/j.rse.2005.10.014

    Article  Google Scholar 

  19. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  20. Pal, M.: Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26(1), 217–222 (2005). https://doi.org/10.1080/01431160412331269698

    Article  Google Scholar 

  21. Cutler, D.R., et al.: Random forests for classification in ecology. Ecology 88(11), 2783–2792 (2007). https://doi.org/10.1890/07-0539.1

    Article  Google Scholar 

  22. Belgiu, M., Drăguţ, L.: Random forest in remote sensing: a review of applications and future directions. ISPRS J. Photogram. Remote Sens. 114, 24–31 (2016). https://doi.org/10.1016/j.isprsjprs.2016.01.011

    Article  Google Scholar 

  23. He, Y., Lee, E., Warner, T.A.: A Time Series of Annual Land Use and Land Cover Maps of China from 1982 to 2013 Generated Using AVHRR GIMMS NDVI3g Data Remote Sensing of Environment a Time Series of Annual Land Use and Land Cover Maps of China from 1982 to 2013 Generated Using AVHRR GIM, vol. 199. Elsevier, Amsterdam (2017). https://doi.org/10.1016/j.rse.2017.07.010

  24. https://en.climate-data.org/asia/india/rajasthan/jodhpur-2848/. Accessed 13 June 2020

  25. https://www.weather-ind.com/en/india/jodhpur-climate. Accessed 13 June 2020

  26. https://www.rajras.in/index.php/soils-of-rajasthan-2/. Accessed 13 June 2020

  27. Greaves, H.E., et al.: High-resolution mapping of aboveground shrub biomass in arctic tundra using airborne Lidar and imagery. Remote Sens. Environ. 184, 361–373 (2016). https://doi.org/10.1016/j.rse.2016.07.026

    Article  Google Scholar 

  28. Mutanga, O., Adam, E., Cho, M.A.: High density biomass estimation for wetland vegetation using worldview-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Observ. Geoinf. 18, 399–406 (2012). https://doi.org/10.1016/j.jag.2012.03.012

    Article  Google Scholar 

  29. Gwal, S., Singh, S., Gupta, S., Anand, S.: Understanding forest biomass and net primary productivity in Himalayan ecosystem using geospatial approach. Model. Earth Syst. Environ. 6(4), 2517–2534 (2020). https://doi.org/10.1007/s40808-020-00844-4

    Article  Google Scholar 

  30. Liaw, A., Wiener, M.: Classification and regression by RandomForest, vol. 2 (2002)

    Google Scholar 

  31. Abdel-Rahman, E.M., Ahmed, F.B., Ismail, R.: Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 hyperion hyperspectral data. Int. J. Remote Sens. 34(2), 712–728 (2013). https://doi.org/10.1080/01431161.2012.713142

    Article  Google Scholar 

  32. Hancock, D.W., Doughtery, C.T.: Relationships between blue-and red-based vegetation indices and leaf area and yield of alfalfa. Crop science 47(6), 2547–2556 (2007). https://doi.org/10.2135/cropsci2007.01.0031

    Article  Google Scholar 

  33. Perry, C.R., Lautenschlager, L.F.: Functional equivalence of spectral vegetation indices. Remote Sens. Environ. 14(1–3), 169–182 (1984)

    Article  Google Scholar 

  34. Bannari, A., Morin, D., Bonn, F., Huete, A.R.: A review of vegetation indices. Remote Sensing Reviews 13(1–2), 95–120 (1995). https://doi.org/10.1080/02757259509532298

    Article  Google Scholar 

  35. Jiang, Z., Huete, A., Didan, K., Miura, T.: Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 112(10), 3833–3845 (2008). https://doi.org/10.1016/j.rse.2008.06.006

    Article  Google Scholar 

  36. Sripada, R., et al. Determining in-season nitrogen requirements for corn using aerial color-infrared photography. Ph.D. dissertation, North Carolina State University (2005)

    Google Scholar 

  37. Gitelson, A.A., Kaufman, Y.J., Merzlyak, M.N.: Use of a green channel in remote sensing of global vegetation from EOS- MODIS. Remote Sens. Environ. 58, 289–298 (1996). https://doi.org/10.1016/S0034-4257(96)00072-7

    Article  Google Scholar 

  38. Sripada, R., et al.: Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agron. J. 98, 968–977 (2006)

    Article  Google Scholar 

  39. Glenn, E.P., Nagler, P.L., Huete, A.R.: Vegetation index methods for estimating evapotranspiration by remote sensing. Surv. Geophys. 31(6), 531–555 (2010). https://doi.org/10.1007/s10712-010-9102-2

    Article  Google Scholar 

  40. Escadafal, R., Belghith, A., etal.: Indices spectraux pour la degradation des milieu naturels en Tunisie aride (1994)

    Google Scholar 

  41. Crippen, R.: Calculating the vegetation index faster. Remote Sens. Environ. 34(1), 71–73 (1990). https://doi.org/10.1016/0034-4257(90)90085-Z

    Article  Google Scholar 

  42. Segal, D.: Theoretical basis for differentiation of Ferric-Tron bearing minerals, using landsat MSS Data. In: Proceedings of Symposium for Remote Sensing of Environment, 2nd Thematic Conference on Remote Sensing for Exploratory Geology, Fort Worth, TX (1982), pp. 949–951

    Google Scholar 

  43. Schlerf, M., Atzberger, C., Hill, J.: Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sens. Environ. 95(2), 177–194 (2005). https://doi.org/10.1016/j.rse.2004.12.016

    Article  Google Scholar 

  44. Jurgens, C.: The modified normalized difference vegetation index (MNDVI) a new index to determine frost damages in agriculture based on Landsat TM data. Int. J. Remote Sens. 18(17), 3583–3594 (1997). https://doi.org/10.1080/014311697216810

    Article  Google Scholar 

  45. Gong, P., Ruiliang, P., Biging, G.S., Larrieu, M.R.: Estimation of forest leaf area index using vegetation indices derived from hyperion hyperspectral data. IEEE Trans. Geosci. Remote Sens. 41(6), 1355–1362 (2003). https://doi.org/10.1109/TGRS.2003.812910

    Article  Google Scholar 

  46. Raymond, H.E., Rock, B.N., Nobel, P.S.: Measurement of leaf relative water content by infrared reflectance. Remote Sens. Environ. 22, 429–435 (1987). https://doi.org/10.1016/0034-4257(87)90094-0

    Article  Google Scholar 

  47. Vogelmann, J.E., Rock, B.N.: Spectral characterization of suspected acid deposition damage in red spruce (Picea rubens) stands from Vermont. In: Airborne Imaging Spectrometer Data Anal, pp. 51–55 (1985)

    Google Scholar 

  48. Vermote, E., Justice, C., Claverie, M., Franch, B.: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 185, 46–56 (2016)

    Article  Google Scholar 

  49. Hardisky, M.A., Smart, R.M., Klemas, V.: Seasonal spectral characteristics and aboveground biomass of the Tidal Marsh plant, Spart. Alternif. 49 (1983)

    Google Scholar 

  50. Tucker, C.J.: Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8(2), 127–150 (1979)

    Article  Google Scholar 

  51. Goel, N.S., Qin, W.: Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: a computer simulation. Remote Sens. Rev. 10, 309–347 (1994). https://doi.org/10.1080/02757259409532252

    Article  Google Scholar 

  52. Kender, J.R.: Saturation, Hue, and Normalized Color: Calculation, Digitization Effects, and Use (1976)

    Google Scholar 

  53. Majasalmi, T., Rautiainen, M.: The potential of sentinel-2 data for estimating biophysical variables in a boreal forest: a simulation study. Remote Sens. Lett. 7(5), 427–436 (2016). https://doi.org/10.1080/2150704X.2016.1149251

    Article  Google Scholar 

  54. Birth, G.S., McVey, G.R.: Measuring the color of growing turf with a reflectance spectrophotometer 1. Agron. J. 60(6), 640–643 (1968). https://doi.org/10.2134/agronj1968.00021962006000060016x

    Article  Google Scholar 

  55. Huntjr, E., Rock, B.: Detection of changes in leaf water content using near- and middle-infrared reflectances. Remote Sens. Environ. 30(1), 43–54 (1989). https://doi.org/10.1016/0034-4257(89)90046-1

    Article  Google Scholar 

  56. Kaufman, Y.J., Tanre, D.: Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 30(2), 261–270 (1992)

    Article  Google Scholar 

  57. Lymburner, L., Beggs, P.J., Jacobson, C.R.: 2000_Feb_183-191. 66 (2000)

    Google Scholar 

  58. Chen, L., Ren, C., Zhang, B., Wang, Z., Xi, Y.: Estimation of forest above-ground biomass by geographically weighted regression and machine learning with sentinel imagery. Forests. 9, 582 (2018). https://doi.org/10.3390/f9100582

    Article  Google Scholar 

  59. Rouse, J.W., Hass, R.H., Schell, J.A., Deering, D.W.: Monitoring Vegetation Systems in the Great Plains with ERTS, vol. 1 (1973). doi:citeulike-article-id:12009708

    Google Scholar 

  60. Kauth, R.J.: Tasselled Cap - A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by Landsat (1976)

    Google Scholar 

  61. Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67, 786–804 (1979). https://doi.org/10.1109/proc.1979.11328

    Article  Google Scholar 

  62. Li, Z., Chen, C., Zhang, L.: Estimating urban vegetation biomass from sentinel-2A image data. Forests 11(2), 125 (2020). https://doi.org/10.3390/f11020125

    Article  Google Scholar 

  63. Tavasoli, N., Arefi, H., Samiei-Esfahany, S., Ronoud, Q.: Modelling the amount of carbon stock using remote sensing in urban forest and its relationship with land use change. Int. Archiv. Photogram. Remote Sens. Spatial Inf. Sci. XLII-4/W18, 1051–1058 (2019). https://doi.org/10.5194/isprs-archives-XLII-4-W18-1051-2019

    Article  Google Scholar 

  64. Pham, T.D., Yoshino, K., Le, N.N., Bui, D.T.: Estimating aboveground biomass of a mangrove plantation on the Northern Coast of Vietnam using machine learning techniques with an integration of ALOS-2 PALSAR-2 and Sentinel-2A data. Int. J. Remote Sens. 39(22), 7761–7788 (2018). https://doi.org/10.1080/01431161.2018.1471544

    Article  Google Scholar 

  65. Shrestha, H.L., Rai, A., Dhakal, P.: Assessment of above ground biomass of trees outside forest (TOF) in the context of climate change. J. Ecol. Nat. Resour. (2020). https://doi.org/10.23880/jenr-16000186

  66. Heyojoo, B.P., Nandy, S.: Estimation of above-ground phytomass and carbon in tree resources outside the forest (TROF): a geo-spatial approach. Banko Janakari 24(1), 34–40 (2015). https://doi.org/10.3126/banko.v24i1.13488

    Article  Google Scholar 

  67. Pitriya, A., Rokhmatuloh, R., Wibowo, A.: Biomass Estimation by Combining Field-Sampling Measurement and Vegetation Indices Derived from SPOT-7 Imagery in Urban Area: Case Study in South Tangerang, Indonesia Biomass Estimation by Combining Field-Sampling Measurement and Vegetation Indices Deri, vol. 020177 (2018)

    Google Scholar 

  68. Avtar, R., Suzuki, R., Sawada, H.: Natural forest biomass estimation based on plantation information using PALSAR data. PLoS ONE 9(1), e86121 (2014). https://doi.org/10.1371/journal.pone.0086121

    Article  Google Scholar 

  69. Askar, N.N., Phairuang, W., Wicaksono, P., Sayektiningsih, T.: Estimating aboveground biomass on private forest using Sentinel-2 imagery. J. Sens. 2018, 1–11 (2018). https://doi.org/10.1155/2018/6745629

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep Chaurasia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uniyal, S., Chaurasia, K., Purohit, S., Rao, S.S., Mahammood, V. (2022). Geo-ML Enabled Above Ground Biomass and Carbon Estimation for Urban Forests. In: Garg, D., Jagannathan, S., Gupta, A., Garg, L., Gupta, S. (eds) Advanced Computing. IACC 2021. Communications in Computer and Information Science, vol 1528. Springer, Cham. https://doi.org/10.1007/978-3-030-95502-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95502-1_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95501-4

  • Online ISBN: 978-3-030-95502-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics