Skip to main content

Network-Based Identification of Module Biomarker Associated with Hepatocellular Carcinoma

  • Conference paper
  • First Online:
Advanced Computing (IACC 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1528))

Included in the following conference series:

  • 635 Accesses

Abstract

Hepatocellular carcinoma (HCC) remains a second major cause of cancer-related death worldwide due to late diagnosis at the metastatic stage, therefore there is an urgency to develop non-invasive biomarkers to unravel the molecular mechanism behind the progression of disease. MicroRNAs (miRNAs) and messenger RNA (mRNA) has been reported to be differentially expressed in HCC, and hence can play an important role of biomarkers. This work focuses on the identification of miRNA modules associated with the disease by a network-based survival-associated approach. First, a set of 10,00 miRNA datasets has been extracted from the cancer genome atlas program (TGCA) repository. Next, miRNA datasets with available expression and clinical data were identified. In total, 700–750 differentially expressed miRNA were identified to create a weighted mRNA co-expression network. By network analysis, miR302/367 clusters were identified to be differentially expressed. Later, mir302d was identified to be the potential biomarker for the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Llovet, J.M., et al.: Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2, 16018 (2016). https://doi.org/10.1038/nrdp.2016.18

    Article  Google Scholar 

  2. El-Serag, H.B.: Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142, 1264-1273.e1 (2012). https://doi.org/10.1053/j.gastro.2011.12.061

    Article  Google Scholar 

  3. Tang, A., Hallouch, O., Chernyak, V., Kamaya, A., Sirlin, C.B.: Epidemiology of hepatocellular carcinoma: target population for surveillance and diagnosis. Abdom. Radiol. 43(1), 13–25 (2017). https://doi.org/10.1007/s00261-017-1209-1

    Article  Google Scholar 

  4. Kanwal, F., Kramer, J., Asch, S.M., Chayanupatkul, M., Cao, Y., El-Serag, H.B.: Risk of hepatocellular cancer in HCV patients treated with direct-acting antiviral agents. Gastroenterology 153, 996-1005.e1 (2017). https://doi.org/10.1053/j.gastro.2017.06.012

    Article  Google Scholar 

  5. Dhanasekaran, R., Bandoh, S., Roberts, L.R.: Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000Res 5, 879 (2016). https://doi.org/10.12688/f1000research.6946.1

    Article  Google Scholar 

  6. Liu, L.-L., Fu, D., Ma, Y., Shen, X.-Z.: The power and the promise of liver cancer stem cell markers. Stem Cells Dev. 20, 2023–2030 (2011). https://doi.org/10.1089/scd.2011.0012

    Article  Google Scholar 

  7. Singal, A.G., Lampertico, P., Nahon, P.: Epidemiology and surveillance for hepatocellular carcinoma: new trends. J. Hepatol. 72, 250–261 (2020). https://doi.org/10.1016/j.jhep.2019.08.025

    Article  Google Scholar 

  8. Alzahrani, B., Iseli, T.J., Hebbard, L.W.: Non-viral causes of liver cancer: does obesity led inflammation play a role? Cancer Lett. 345, 223–229 (2014). https://doi.org/10.1016/j.canlet.2013.08.036

    Article  Google Scholar 

  9. Marquardt, J.U., Andersen, J.B., Thorgeirsson, S.S.: Functional and genetic deconstruction of the cellular origin in liver cancer. Nat. Rev. Cancer 15, 653–667 (2015). https://doi.org/10.1038/nrc4017

    Article  Google Scholar 

  10. Brabletz, T., Kalluri, R., Nieto, M.A., Weinberg, R.A.: EMT in cancer. Nat. Rev. Cancer 18, 128–134 (2018). https://doi.org/10.1038/nrc.2017.118

    Article  Google Scholar 

  11. Nault, J.C., et al.: High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat. Commun. 4, 2218 (2013). https://doi.org/10.1038/ncomms3218

    Article  Google Scholar 

  12. Pilati, C., et al.: Genomic profiling of hepatocellular adenomas reveals recurrent FRK-activating mutations and the mechanisms of malignant transformation. Cancer Cell 25, 428–441 (2014). https://doi.org/10.1016/j.ccr.2014.03.005

    Article  Google Scholar 

  13. Kalluri, R., Weinberg, R.A.: The basics of epithelial–mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009). https://doi.org/10.1172/JCI39104

    Article  Google Scholar 

  14. Lamouille, S., Xu, J., Derynck, R.: Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196 (2014). https://doi.org/10.1038/nrm3758

    Article  Google Scholar 

  15. Behrens, J., et al.: Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β. Science 280, 596–599 (1998). https://doi.org/10.1126/science.280.5363.596

    Article  Google Scholar 

  16. Huber, O., Korn, R., McLaughlin, J., Ohsugi, M., Herrmann, B.G., Kemler, R.: Nuclear localization of β-catenin by interaction with transcription factor LEF-1. Mech. Dev. 59, 3 (1996). https://doi.org/10.1016/0925-4773(96)00597-7

    Article  Google Scholar 

  17. Laurent-Puig, P., et al.: Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 120, 1763–1773 (2001). https://doi.org/10.1053/gast.2001.24798

    Article  Google Scholar 

  18. Schulze, K., et al.: Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 47, 505–511 (2015). https://doi.org/10.1038/ng.3252

    Article  Google Scholar 

  19. Guichard, C., et al.: Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat. Genet. 44, 694–698 (2012). https://doi.org/10.1038/ng.2256

    Article  Google Scholar 

  20. Sporn, M.B., Liby, K.T.: NRF2 and cancer: the good, the bad and the importance of context. Nat. Rev. Cancer 12, 564–571 (2012). https://doi.org/10.1038/nrc3278

    Article  Google Scholar 

  21. Calin, G.A., Croce, C.M.: MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 857–866 (2006). https://doi.org/10.1038/nrc1997

    Article  Google Scholar 

  22. Andersen, G.B., Tost, J.: Circulating miRNAs as biomarker in cancer. In: Schaffner, F., Merlin, J.-L., von Bubnoff, N. (eds.) Tumor Liquid Biopsies. RRCR, vol. 215, pp. 277–298. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-26439-0_15

    Chapter  Google Scholar 

  23. Ramasamy, A., Mondry, A., Holmes, C.C., Altman, D.G.: Key issues in conducting a meta-analysis of gene expression microarray datasets. PLoS Med. 5, e184 (2008). https://doi.org/10.1371/journal.pmed.0050184

    Article  Google Scholar 

  24. Glass, G.V.: Primary, secondary, and meta-analysis of research. Educ. Res. 5, 3–8 (1976). https://doi.org/10.3102/0013189X005010003

    Article  Google Scholar 

  25. Barabási, A.-L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011). https://doi.org/10.1038/nrg2918

    Article  Google Scholar 

  26. Lai, X., Bhattacharya, A., Schmitz, U., Kunz, M., Vera, J., Wolkenhauer, O.: A systems’ biology approach to study microRNA-mediated gene regulatory networks. Biomed. Res. Int. 2013, 1–15 (2013). https://doi.org/10.1155/2013/703849

    Article  Google Scholar 

  27. Lai, X., et al.: Computational analysis of target hub gene repression regulated by multiple and cooperative miRNAs. Nucleic Acids Res. 40, 8818–8834 (2012). https://doi.org/10.1093/nar/gks657

    Article  Google Scholar 

  28. Lai, X., Wolkenhauer, O., Vera, J.: Modeling miRNA regulation in cancer signaling systems: miR-34a regulation of the p53/Sirt1 signaling module. In: Liu, X., Betterton, M.D. (eds.) Computational Modeling of Signaling Networks, pp. 87–108. Humana Press, Totowa, NJ (2012). https://doi.org/10.1007/978-1-61779-833-7_6

    Chapter  Google Scholar 

  29. Lai, X., Eberhardt, M., Schmitz, U., Vera, J.: Systems biology-based investigation of cooperating microRNAs as monotherapy or adjuvant therapy in cancer. Nucleic Acids Res. 47, 7753–7766 (2019). https://doi.org/10.1093/nar/gkz638

    Article  Google Scholar 

  30. Zhang, S., Ng, M.K.: Gene-microRNA network module analysis for ovarian cancer. BMC Syst. Biol. 10, 117 (2016). https://doi.org/10.1186/s12918-016-0357-1

    Article  Google Scholar 

  31. Bonnefond, M.-L., et al.: Calcium signals inhibition sensitizes ovarian carcinoma cells to anti-Bcl-xL strategies through Mcl-1 down-regulation. Apoptosis 20(4), 535–550 (2015). https://doi.org/10.1007/s10495-015-1095-3

    Article  Google Scholar 

  32. Chandler, R.L., et al.: Coexistent ARID1A–PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nat. Commun. 6, 6118 (2015). https://doi.org/10.1038/ncomms7118

    Article  Google Scholar 

  33. Grossman, R.L., et al.: Toward a shared vision for cancer genomic data. N. Engl. J. Med. 375, 1109–1112 (2016). https://doi.org/10.1056/NEJMp1607591

    Article  Google Scholar 

  34. McCarthy, D.J., Chen, Y., Smyth, G.K.: Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012). https://doi.org/10.1093/nar/gks042

    Article  Google Scholar 

  35. Tarazona, S., et al.: Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res. 43, e140 (2015). https://doi.org/10.1093/nar/gkv711

    Article  Google Scholar 

  36. Ritchie, M.E., et al.: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015). https://doi.org/10.1093/nar/gkv007

    Article  Google Scholar 

  37. Shannon, P.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003). https://doi.org/10.1101/gr.1239303

    Article  Google Scholar 

  38. Liu, R.-F., et al.: Down-regulation of miR-517a and miR-517c promotes proliferation of hepatocellular carcinoma cells via targeting Pyk2. Cancer Lett. 329, 164–173 (2013). https://doi.org/10.1016/j.canlet.2012.10.027

    Article  Google Scholar 

  39. Zhang, Y.-J., Pan, Q., Yu, Y., Zhong, X.-P.: microRNA-519d induces autophagy and apoptosis of human hepatocellular carcinoma cells through activation of the AMPK signaling pathway via Rab10. CMAR 12, 2589–2602 (2020). https://doi.org/10.2147/CMAR.S207548

    Article  Google Scholar 

  40. Cai, N., Wang, Y.-D., Zheng, P.-S.: The microRNA-302-367 cluster suppresses the proliferation of cervical carcinoma cells through the novel target AKT1. RNA 19, 85–95 (2013). https://doi.org/10.1261/rna.035295.112

    Article  Google Scholar 

  41. Lin, S.-L., Chang, D.C., Ying, S.-Y., Leu, D., Wu, D.T.S.: MicroRNA miR-302 inhibits the tumorigenecity of human pluripotent stem cells by coordinate suppression of the CDK2 and CDK4/6 cell cycle pathways. Cancer Res. 70, 9473–9482 (2010). https://doi.org/10.1158/0008-5472.CAN-10-2746

    Article  Google Scholar 

  42. Fareh, M., et al.: The miR 302–367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network. Cell Death Differ. 19, 232–244 (2012). https://doi.org/10.1038/cdd.2011.89

    Article  Google Scholar 

  43. Lin, S.-L., et al.: Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA 14, 2115–2124 (2008). https://doi.org/10.1261/rna.1162708

    Article  Google Scholar 

  44. Ma, J., et al.: MicroRNA-302a targets GAB2 to suppress cell proliferation, migration and invasion of glioma. Oncol. Rep. 37, 1159–1167 (2017). https://doi.org/10.3892/or.2016.5320

    Article  Google Scholar 

  45. Bobowicz, M., et al.: Prognostic value of 5-microRNA based signature in T2-T3N0 colon cancer. Clin. Exp. Metas. 33(8), 765–773 (2016). https://doi.org/10.1007/s10585-016-9810-1

    Article  Google Scholar 

  46. Cao, Y.P., et al.: MiR-302 a/b/c suppresses tumor angiogenesis in hepatocellular carcinoma by targeting MACC1. Eur. Rev. Med. Pharmacol. Sci. 23, 7863–7873 (2019). https://doi.org/10.26355/eurrev_201909_18996

    Article  Google Scholar 

  47. Borgdorff, V., et al.: Multiple microRNAs rescue from Ras-induced senescence by inhibiting p21Waf1/Cip1. Oncogene 29, 2262–2271 (2010). https://doi.org/10.1038/onc.2009.497

    Article  Google Scholar 

  48. Xu, F., et al.: MicroRNA-302d promotes the proliferation of human pluripotent stem cell-derived cardiomyocytes by inhibiting LATS2 in the Hippo pathway. Clin. Sci. 133, 1387–1399 (2019). https://doi.org/10.1042/CS20190099

    Article  Google Scholar 

  49. Chen, Y.-L., Xu, Q.-P., Guo, F., Guan, W.-H.: MicroRNA-302d downregulates TGFBR2 expression and promotes hepatocellular carcinoma growth and invasion. Exp. Ther. Med. 13, 681–687 (2017). https://doi.org/10.3892/etm.2016.3970

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ravins Dohare or Shweta Sankhwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hussain, T., Singh, P., Kumar, A., Ahmad, N., Dohare, R., Sankhwar, S. (2022). Network-Based Identification of Module Biomarker Associated with Hepatocellular Carcinoma. In: Garg, D., Jagannathan, S., Gupta, A., Garg, L., Gupta, S. (eds) Advanced Computing. IACC 2021. Communications in Computer and Information Science, vol 1528. Springer, Cham. https://doi.org/10.1007/978-3-030-95502-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95502-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95501-4

  • Online ISBN: 978-3-030-95502-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics