Skip to main content

Mining the Semantic Web with Machine Learning: Main Issues that Need to Be Known

  • Chapter
  • First Online:
Reasoning Web. Declarative Artificial Intelligence (Reasoning Web 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13100))

Included in the following conference series:

  • 396 Accesses

Abstract

The Semantic Web (SW) is characterized by the availability of a vast amount of semantically annotated data collections. Annotations are provided by exploiting ontologies acting as shared vocabularies. Additionally ontologies are endowed with deductive reasoning capabilities which allow to make explicit knowledge that is formalized implicitly. Along the years a large number of data collections have been developed and interconnected, as testified by the Linked Open Data Cloud. Currently, seminal examples are represented by the numerous Knowledge Graphs (KGs) that have been built, either as enterprise KGs or open KGs, that are freely available. All of them are characterized by very large data volumes, but also incompleteness and noise. These characteristics have made the exploitation of deductive reasoning services less feasible from a practical viewpoint, opening up to alternative solutions, grounded on Machine Learning (ML), for mining knowledge from the vast amount of information available. Actually, ML methods have been exploited in the SW for solving several problems such as link and type prediction, ontology enrichment and completion (both at terminological and assertional level), and concept leaning. Whilst initially symbol-based solutions have been mostly targeted, recently numeric-based approaches are receiving major attention because of the need to scale on the very large data volumes. Nevertheless, data collections in the SW have peculiarities that can hardly be found in other fields. As such the application of ML methods for solving the targeted problems is not straightforward. This paper extends [20], by surveying the most representative symbol-based and numeric-based solutions and related problems, with a special focus on the main issues that need to be considered and solved when ML methods are adopted in the SW field as well as by analyzing the main peculiarities and drawbacks for each solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.w3.org/OWL/.

  2. 2.

    The induced knowledge should be validated by ontology engineerings for the possible further enrichment of ontologies.

  3. 3.

    https://dl-learner.org/.

  4. 4.

    TransR tackles some weak points in TransE, such as the difficulty of modeling specific types of relationships  [3].

  5. 5.

    Facilities available in the Apache Jena framework were used: https://jena.apache.org.

References

  1. Abboud, R., Ceylan, İ.İ., Lukasiewicz, T., Salvatori, T.: BoxE: a box embedding model for knowledge base completion. In: Proceedings of NeurIPS 2020 (2020)

    Google Scholar 

  2. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Buneman, P., et al. (eds.) Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, pp. 207–216. ACM Press (1993). https://doi.org/10.1145/170035.170072

  3. Arnaout, H., Razniewski, S., Weikum, G.: Enriching knowledge bases with interesting negative statements. In: Das, D., et al. (eds.) Proceedings of AKBC 2020 (2020). https://doi.org/10.24432/C5101K

  4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): Description Logic Handbook, 2nd edn. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511711787

    Book  Google Scholar 

  5. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43 (2001). https://doi.org/10.4018/jswis.2009081901

    Article  Google Scholar 

  6. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Sem. Web Inf. Syst. 5(3), 1–22 (2009). https://doi.org/10.4018/jswis.2009081901

    Article  Google Scholar 

  7. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees. Artif. Intell. 101(1–2), 285–297 (1998). https://doi.org/10.1016/S0004-3702(98)00034-4

    Article  MATH  Google Scholar 

  8. Bloehdorn, S., Sure, Y.: Kernel methods for mining instance data in ontologies. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 58–71. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_5

    Chapter  Google Scholar 

  9. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Burges, C.J.C., et al. (eds.) Proceedings of NIPS 2013, pp. 2787–2795. Curran Associates, Inc. (2013)

    Google Scholar 

  10. Cai, H., Zheng, V.W., Chang, K.: A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(09), 1616–1637 (2018). https://doi.org/10.1109/TKDE.2018.2807452

    Article  Google Scholar 

  11. Carbonneau, M., Cheplygina, V., Granger, E., Gagnon, G.: Multiple instance learning. Pattern Recogn. 77, 329–353 (2018). https://doi.org/10.1016/j.patcog.2017.10.009

    Article  Google Scholar 

  12. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-supervised Learning. The MIT Press, Cambridge (2006). https://doi.org/10.7551/mitpress/9780262033589.001.0001

    Book  Google Scholar 

  13. Chen, J., Lécué, F., Pan, J., Horrocks, I., Chen, H.: Knowledge-based transfer learning explanation. In: Thielscher, M., et al. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Sixteenth International Conference, KR 2018, pp. 349–358. AAAI Press (2018)

    Google Scholar 

  14. Cochez, M., Ristoski, P., Ponzetto, S.P., Paulheim, H.: Global RDF vector space embeddings. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 190–207. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_12

    Chapter  Google Scholar 

  15. d’Amato, C.: Logic and learning: Can we provide explanations in the current knowledge lake? In: Bonatti, P., et al. (eds.) Knowledge Graphs: New Directions for Knowledge Representation on the Semantic Web (Dagstuhl Seminar 18371), Dagstuhl Reports, vol. 8, pp. 37–38. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019). https://doi.org/10.4230/DagRep.8.9.29

  16. d’Amato, C., Fanizzi, N., Esposito, F.: Query answering and ontology population: an inductive approach. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 288–302. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68234-9_23

    Chapter  MATH  Google Scholar 

  17. d’Amato, C., Fanizzi, N., Esposito, F.: Inductive learning for the semantic web: what does it buy? Semant. Web 1(1–2), 53–59 (2010). https://doi.org/10.3233/SW-2010-0007

    Article  Google Scholar 

  18. d’Amato, C., Quatraro, N.F., Fanizzi, N.: Injecting background knowledge into embedding models for predictive tasks on knowledge graphs. In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 441–457. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77385-4_26

    Chapter  Google Scholar 

  19. d’Amato, C., Tettamanzi, A.G.B., Minh, T.D.: Evolutionary discovery of multi-relational association rules from ontological knowledge bases. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 113–128. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49004-5_8

    Chapter  Google Scholar 

  20. d’Amato, C.: Machine learning for the semantic web: lessons learnt and next research directions. Semant. Web 11(1), 195–203 (2020). https://doi.org/10.3233/SW-200388

    Article  Google Scholar 

  21. Deng, L., Yu, D. (eds.): Deep Learning: Methods and Applications. NOW Publishers, Delft (2014). https://doi.org/10.1561/2000000039

    Book  Google Scholar 

  22. Doran, D., Schulz, S., Besold, T.: What does explainable AI really mean? A new conceptualization of perspectives. In: Besold, T.R., Kutz, O. (eds.) Proceedings of the First International Workshop on Comprehensibility and Explanation in AI and ML 2017 co-located with 16th International Conference of the Italian Association for Artificial Intelligence (AI*IA 2017), CEUR Work. Proc., vol. 2071. CEUR-WS.org (2017)

    Google Scholar 

  23. Fanizzi, N., d’Amato, C., Esposito, F.: Conceptual clustering and its application to concept drift and novelty detection. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 318–332. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68234-9_25

    Chapter  MATH  Google Scholar 

  24. Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85928-4_12

    Chapter  Google Scholar 

  25. Fanizzi, N., d’Amato, C., Esposito, F.: Metric-based stochastic conceptual clustering for ontologies. Inf. Syst. 34(8), 792–806 (2009). https://doi.org/10.1016/j.is.2009.03.008

    Article  Google Scholar 

  26. Fanizzi, N., d’Amato, C., Esposito, F.: Induction of concepts in web ontologies through terminological decision trees. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6321, pp. 442–457. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15880-3_34

    Chapter  Google Scholar 

  27. Fanizzi, N., Rizzo, G., d’Amato, C.: Boosting DL concept learners. In: Hitzler, P., et al. (eds.) ESWC 2019. LNCS, vol. 11503, pp. 68–83. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21348-0_5

    Chapter  Google Scholar 

  28. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: AMIE: association rule mining under incomplete evidence in ontological knowledge bases. In: Schwabe, D., et al. (eds.) 22nd International World Wide Web Conference, WWW 2013, pp. 413–422. International World Wide Web Conferences Steering Committee/ACM (2013). https://doi.org/10.1145/2488388.2488425

  29. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE\(+\). The VLDB J. 24(6), 707–730 (2015). https://doi.org/10.1007/s00778-015-0394-1

    Article  Google Scholar 

  30. d’Avila Garcez, A., et al.: Neural-symbolic learning and reasoning: contributions and challenges. In: 2015 AAAI Spring Symposia. AAAI Press (2015). http://www.aaai.org/ocs/index.php/SSS/SSS15/paper/view/10281

  31. Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)

    MATH  Google Scholar 

  32. Guo, H., Herna, V.L.: Learning from imbalanced data sets with boosting and data generation: the databoost-im approach. SIGKDD Explor. 6(1), 30–39 (2004). https://doi.org/10.1145/1007730.1007736

    Article  Google Scholar 

  33. Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Jointly embedding knowledge graphs and logical rules. In: Proceedings of EMNLP 2016, pp. 192–202. ACL (2016). https://doi.org/10.18653/v1/D16-1019

  34. Hitzler, P., Bianchi, F., Ebrahimi, M., Sarker, M.K.: Neural-symbolic integration and the semantic web. Semant. Web J. 11(1), 3–11 (2020). https://doi.org/10.3233/SW-190368

    Article  Google Scholar 

  35. Hoekstra, R.: The knowledge reengineering bottleneck. Semant. Web J. 1, 111–115 (2010). https://doi.org/10.3233/SW-2010-0004

    Article  Google Scholar 

  36. Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. 54, 1–37 (2021). https://doi.org/10.1145/3447772

    Article  Google Scholar 

  37. Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean., M.: SWRL: a semantic web rule language combining owl and RuleML (2004). http://www.aaai.org/ocs/index.php/SSS/SSS15/paper/view/10281

  38. Jayathilaka, M., Mu, T., Sattler, U.: Visual-semantic embedding model informed by structured knowledge. In: Rudolph, S., Marreiros, G. (eds.) Proceedings of STAIRS 2020. CEUR, vol. 2655. CEUR-WS.org (2020). http://ceur-ws.org/Vol-2655/paper23.pdf

  39. Ji, S., Pan, S., Cambria, E., Marttinen, P., Yu, P.S.: A survey on knowledge graphs: representation, acquisition and applications (2020). arXiv:2002.00388

  40. Józefowska, J., Lawrynowicz, A., Lukaszewski, T.: The role of semantics in mining frequent patterns from knowledge bases in description logics with rules. TPLP 10(3), 251–289 (2010). https://doi.org/10.1017/S1471068410000098

    Article  MATH  Google Scholar 

  41. Kazemi, S., Poole, D.: Simple embedding for link prediction in knowledge graphs. In: Bengio, S., et al. (eds.) Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, pp. 4289–4300. ACM (2018)

    Google Scholar 

  42. Koller, D., Friedman, N. (eds.): Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  43. Kramer, S., Lavrač, N., Flach, P.: Propositionalization approaches to relational data mining. In: Džeroski, S., Lavraž, N. (eds.) Relational Data Mining, pp. 262–291. LNCS, Springer (2001). https://doi.org/10.1007/978-3-662-04599-2_11

  44. Labaf, M., Hitzler, P., Evans, A.: Propositional rule extraction from neural networks under background knowledge. In: Besold, T.R., et al. (eds.) Proceedings of the Twelfth International Workshop on Neural-Symbolic Learning and Reasoning, NeSy 2017. CEUR Workshop Proceedings, vol. 2003. CEUR-WS.org (2017)

    Google Scholar 

  45. Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for ontology engineering. J. Web Semant. 9(1), 71–81 (2011). https://doi.org/10.1016/j.websem.2011.01.001

    Article  Google Scholar 

  46. Lehmann, J., Bühmann, L.: ORE - a tool for repairing and enriching knowledge bases. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6497, pp. 177–193. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17749-1_12

    Chapter  Google Scholar 

  47. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI 2015 Proceedings, pp. 2181–2187. AAAI Press (2015)

    Google Scholar 

  48. Liu, X., Wu, J., Zhou, Z.: Exploratory under-sampling for class-imbalance learning. In: Proceedings of the 6th IEEE International Conference on Data Mining (ICDM 2006), pp. 965–969. IEEE Computer Society (2006). https://doi.org/10.1109/ICDM.2006.68

  49. Luger, G.F. (ed.): Artificial Intelligence: Structures and Strategies for Complex Problem Solving. Addison Wesley, Boston (2005)

    Google Scholar 

  50. Melo, A., Völker, J., Paulheim, H.: Type prediction in noisy RDF knowledge bases using hierarchical multilabel classification with graph and latent features. Int. J. Artif. Intell. Tools 26(2), 1–32 (2017). https://doi.org/10.1142/S0218213017600119

    Article  Google Scholar 

  51. Minervini, P., d’Amato, C., Fanizzi, N.: Efficient energy-based embedding models for link prediction in knowledge graphs. J. Intell. Inf. Syst. 47(1), 91–109 (2016). https://doi.org/10.1007/s10844-016-0414-7

    Article  Google Scholar 

  52. Minervini, P., Tresp, V., d’Amato, C., Fanizzi, N.: Adaptive knowledge propagation in web ontologies. TWEB 12(1), 2:1-2:28 (2018). https://doi.org/10.1145/3105961

    Article  Google Scholar 

  53. Minervini, P., Costabello, L., Muñoz, E., Nováček, V., Vandenbussche, P.-Y.: Regularizing knowledge graph embeddings via equivalence and inversion axioms. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 668–683. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_40

    Chapter  Google Scholar 

  54. Minervini, P., Demeester, T., Rocktäschel, T., Riedel, S.: Adversarial sets for regularising neural link predictors. In: Elidan, G., et al. (eds.) UAI 2017 Proceedings. AUAI Press (2017)

    Google Scholar 

  55. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016). https://doi.org/10.1109/JPROC.2015.2483592

    Article  Google Scholar 

  56. Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on multi-relational data. In: Getoor, L., Scheffer, T. (eds.) Proceedings of the 28th International Conference on Machine Learning, ICML 2011, pp. 809–816. Omnipress (2011). https://icml.cc/2011/papers/438_icmlpaper.pdf

  57. Paulheim, H.: Make embeddings semantic again! In: Proceedings of the ISWC 2018 P&D-Industry-BlueSky Tracks. CEUR Workshop Proceedings (2018)

    Google Scholar 

  58. Raedt, L.D. (ed.): Logical and Relational Learning: From ILP to MRDM (Cognitive Technologies). Springer-Verlag, Berlin (2008)

    Google Scholar 

  59. Rettinger, A., Lösch, U., Tresp, V., d’Amato, C., Fanizzi, N.: Mining the semantic web - statistical learning for next generation knowledge bases. Data Mining Knowl. Disc. 24(3), 613–662 (2012). https://doi.org/10.1007/s10618-012-0253-2

    Article  MATH  Google Scholar 

  60. Rettinger, A., Nickles, M., Tresp, V.: Statistical relational learning with formal ontologies. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS (LNAI), vol. 5782, pp. 286–301. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04174-7_19

    Chapter  Google Scholar 

  61. Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_30

    Chapter  Google Scholar 

  62. Rizzo, G., d’Amato, C., Fanizzi, N., Esposito, F.: Terminological cluster trees for disjointness axiom discovery. In: Blomqvist, E., et al. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 184–201. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58068-5_12

    Chapter  Google Scholar 

  63. Rizzo, G., Fanizzi, N., d’Amato, C., Esposito, F.: Approximate classification with web ontologies through evidential terminological trees and forests. Int. J. Approx. Reason. 92, 340–362 (2018). https://doi.org/10.1016/j.ijar.2017.10.019

    Article  MATH  Google Scholar 

  64. Rizzo, G., Fanizzi, N., d’Amato, C., Esposito, F.: A framework for tackling myopia in concept learning on the web of data. In: Faron Zucker, C., Ghidini, C., Napoli, A., Toussaint, Y. (eds.) EKAW 2018. LNCS (LNAI), vol. 11313, pp. 338–354. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03667-6_22

    Chapter  MATH  Google Scholar 

  65. Sarker, M., Xie, N., Doran, D., Raymer, M., Hitzler, P.: Explaining trained neural networks with semantic web technologies: First steps. In: Besold, T.R., et al. (eds.) Proceedings of the Twelfth International Workshop on Neural-Symbolic Learning and Reasoning, NeSy 2017. CEUR Workshop Proceedings, vol. 2003. CEUR-WS.org (2017)

    Google Scholar 

  66. Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intell. Syst. 21(3), 96–101 (2006). https://doi.org/10.1109/MIS.2006.62

    Article  Google Scholar 

  67. Siorpaes, K., Hepp, M.: OntoGame: towards overcoming the incentive bottleneck in ontology building. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2007. LNCS, vol. 4806, pp. 1222–1232. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76890-6_50

    Chapter  Google Scholar 

  68. Spinosa, E., de Leon Ferreira de Carvalho, A.P., Gama, J.: Olindda: A cluster-based approach for detecting novelty and concept drift in data streams. In: Symposium of Applied Computing: Proceedings of the ACM International Conference, SAC 2007. vol. 1, pp. 448–452. ACM (2007)

    Google Scholar 

  69. Tiddi, I., d’Aquin, M., Motta, E.: Dedalo: looking for clusters explanations in a labyrinth of linked data. In: Presutti, V., et al. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 333–348. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07443-6_23

    Chapter  Google Scholar 

  70. Tran, A.C., Dietrich, J., Guesgen, H.W., Marsland, S.: An approach to parallel class expression learning. In: Bikakis, A., Giurca, A. (eds.) RuleML 2012. LNCS, vol. 7438, pp. 302–316. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32689-9_25

    Chapter  Google Scholar 

  71. Tran, A., Dietrich, J., Guesgen, H., Marsland, S.: Parallel symmetric class expression learning. J. Mach. Learn. Res. 18(64), 1–34 (2017)

    MATH  Google Scholar 

  72. Völker, J., Niepert, M.: Statistical schema induction. In: ESWC 2011. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21034-1_9

    Chapter  Google Scholar 

  73. Völker, J., Fleischhacker, D., Stuckenschmidt, H.: Automatic acquisition of class disjointness. J. Web Semant. 35(P2), 124–139 (2015). https://doi.org/10.1016/j.websem.2015.07.001

    Article  Google Scholar 

  74. West, R., Gabrilovich, E., Murphy, K., Sun, S., Gupta, R., Lin, D.: Knowledge base completion via search-based question answering. In: Chung, C., et al. (eds.) 23rd International World Wide Web Conference, WWW 2014, pp. 515–526. ACM (2014). https://doi.org/10.1145/2566486.2568032

  75. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23(1), 69–101 (1996)

    Article  Google Scholar 

  76. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Proceedings of ICLR 2015 (2015)

    Google Scholar 

  77. Zhou, Z., Zhang, M.: Multi-label learning. In: Sammut, C., Geoffrey, W. (eds.) Encyclopedia of Machine Learning and Data Mining, pp. 875–881. Springer, Berlin (2017). https://doi.org/10.1007/978-1-4899-7687-1_910

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia d’Amato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

d’Amato, C. (2022). Mining the Semantic Web with Machine Learning: Main Issues that Need to Be Known. In: Šimkus, M., Varzinczak, I. (eds) Reasoning Web. Declarative Artificial Intelligence . Reasoning Web 2021. Lecture Notes in Computer Science(), vol 13100. Springer, Cham. https://doi.org/10.1007/978-3-030-95481-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95481-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95480-2

  • Online ISBN: 978-3-030-95481-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics