Skip to main content

Modular Networks Prevent Catastrophic Interference in Model-Based Multi-task Reinforcement Learning

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13164))

Abstract

In a multi-task reinforcement learning setting, the learner commonly benefits from training on multiple related tasks by exploiting similarities among them. At the same time, the trained agent is able to solve a wider range of different problems. While this effect is well documented for model-free multi-task methods, we demonstrate a detrimental effect when using a single learned dynamics model for multiple tasks. Thus, we address the fundamental question of whether model-based multi-task reinforcement learning benefits from shared dynamics models in a similar way model-free methods do from shared policy networks. Using a single dynamics model, we see clear evidence of task confusion and reduced performance. As a remedy, enforcing an internal structure for the learned dynamics model by training isolated sub-networks for each task notably improves performance while using the same amount of parameters. We illustrate our findings by comparing both methods on a simple gridworld and a more complex vizdoom multi-task experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sonnet (2017). https://github.com/deepmind/sonnet

  2. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/

  3. Caruana, R.: Multitask learning. Mach. Learn. 28, 41–75 (1997). https://doi.org/10.1023/A:1007379606734

    Article  Google Scholar 

  4. Chollet, F., et al.: Keras (2015). https://keras.io

  5. Chua, K., Calandra, R., McAllister, R., Levine, S.: Deep reinforcement learning in a handful of trials using probabilistic dynamics models. In: Advances in Neural Information Processing Systems (NIPS), December 2018, pp. 4754–4765, May 2018. http://arxiv.org/abs/1805.12114

  6. Duan, Y., Schulman, J., Chen, X., Bartlett, P.L., Sutskever, I., Abbeel, P.: Rl\(^2\): fast reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779 abs/1611.02779 (2016). http://arxiv.org/abs/1611.02779

  7. Ebert, F., Finn, C., Dasari, S., Xie, A., Lee, A., Levine, S.: Visual foresight: model-based deep reinforcement learning for vision-based robotic control. arXiv preprint arXiv:1812.00568 (2018)

  8. Feinberg, V., Wan, A., Stoica, I., Jordan, M.I., Gonzalez, J.E., Levine, S.: Model-based value expansion for efficient model-free reinforcement learning. In: Proceedings of the 35th International Conference on Machine Learning (ICML 2018) (2018)

    Google Scholar 

  9. Fernando, C., et al.: PathNet: evolution channels gradient descent in super neural networks. arXiv preprint arXiv:1701.08734 (2017)

  10. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  11. Ha, D., Schmidhuber, J.: Recurrent world models facilitate policy evolution. arXiv preprint arXiv:1809.01999 abs/1809.01999 (2018)

  12. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: International Conference on Machine Learning, pp. 1861–1870. PMLR (2018)

    Google Scholar 

  13. Hafner, D., et al.: Learning latent dynamics for planning from pixels. In: International Conference on Machine Learning, pp. 2555–2565. PMLR (2019)

    Google Scholar 

  14. Hafner, D., Lillicrap, T.P., Norouzi, M., Ba, J.: Mastering atari with discrete world models. arXiv preprint arXiv:2010.02193 abs/2010.02193 (2020)

  15. Hessel, M., et al.: Rainbow: combining improvements in deep reinforcement learning. In: AAAI, pp. 3215–3222 (2018). https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17204

  16. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with Gumbel-Softmax. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings. OpenReview.net (2017)

  17. Kaiser, L., et al.: Model-based reinforcement learning for Atari. arXiv preprint arXiv:1903.00374, March 2019. http://arxiv.org/abs/1903.00374

  18. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous relaxation of discrete random variables. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings. OpenReview.net (2017)

  19. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: International Conference on Machine Learning, pp. 1928–1937. PMLR (2016)

    Google Scholar 

  20. Mnih, V., et al.: Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

  21. Nagabandi, A., Kahn, G., Fearing, R.S., Levine, S.: Neural network dynamics for model-based deep reinforcement learning with model-free fine-tuning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 7559–7566 (2018). https://doi.org/10.1109/ICRA.2018.8463189

  22. Oh, J., Guo, X., Lee, H., Lewis, R., Singh, S.: Action-conditional video prediction using deep networks in Atari games. CoRR 10(1), 52–55 (2015). http://papers.nips.cc/paper/5859-action-conditional-video-prediction-using-deep-networks-in-atari-games.pdf, http://arxiv.org/abs/1507.08750

  23. van den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural discrete representation learning. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf

  24. Racanière, S., et al.: Imagination-augmented agents for deep reinforcement learning. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 5694–5705 (2017)

    Google Scholar 

  25. Rubinstein, R.Y.: Optimization of computer simulation models with rare events. Eur. J. Oper. Res. 99(1), 89–112 (1997)

    Article  Google Scholar 

  26. Rusu, A.A., et al.: Progressive neural networks. arXiv preprint arXiv:1606.04671 abs/1606.04671 (2016)

  27. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  28. Sekar, R., Rybkin, O., Daniilidis, K., Abbeel, P., Hafner, D., Pathak, D.: Planning to explore via self-supervised world models. In: International Conference on Machine Learning, pp. 8583–8592. PMLR (2020)

    Google Scholar 

  29. Silver, D., et al.: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362(6419), 1140–1144 (2018). https://doi.org/10.1126/science.aar6404,http://science.sciencemag.org/

  30. Sutton, R.S.: Dyna, an integrated architecture for learning, planning, and reacting. SIGART Bull. 2(4), 160–163 (1991)

    Article  Google Scholar 

  31. Tesauro, G.: Temporal difference learning and TD-Gammon. Commun. ACM 38(3), 58–68 (1995). https://doi.org/10.1145/203330.203343,https://dl.acm.org/doi/abs/10.1145/203330.203343

  32. Wydmuch, M., Kempka, M., Jaśkowski, W.: VIZDoom competitions: playing doom from pixels. IEEE Trans. Games 11, 248–259 (2018)

    Article  Google Scholar 

  33. Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., Finn, C.: Multi-task reinforcement learning without interference. In: NeurIPS, pp. 1–9 (2019)

    Google Scholar 

Download references

Acknowledgements

We thank Jan Bollenbacher, Dr. Anand Subramoney and Prof. Dr. Tobias Glasmachers for their feedback and help, which greatly influenced this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Schiewer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schiewer, R., Wiskott, L. (2022). Modular Networks Prevent Catastrophic Interference in Model-Based Multi-task Reinforcement Learning. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2021. Lecture Notes in Computer Science(), vol 13164. Springer, Cham. https://doi.org/10.1007/978-3-030-95470-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95470-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95469-7

  • Online ISBN: 978-3-030-95470-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics