Skip to main content

Vision-Based Autonomous UAV Navigation and Landing for Urban Search and Rescue

  • Conference paper
  • First Online:
Robotics Research (ISRR 2019)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 20))

Included in the following conference series:

Abstract

Unmanned Aerial Vehicles (UAVs) equipped with bioradars are a life-saving technology that can enable identification of survivors under collapsed buildings in the aftermath of natural disasters such as earthquakes or gas explosions. However, these UAVs have to be able to autonomously navigate in disaster struck environments and land on debris piles in order to accurately locate the survivors. This problem is extremely challenging as pre-existing maps cannot be leveraged for navigation due to structural changes that may have occurred. Furthermore, existing landing site detection algorithms are not suitable to identify safe landing regions on debris piles. In this work, we present a computationally efficient system for autonomous UAV navigation and landing that does not require any prior knowledge about the environment. We propose a novel landing site detection algorithm that computes costmaps based on several hazard factors including terrain flatness, steepness, depth accuracy, and energy consumption information. We also introduce a first-of-a-kind synthetic dataset of over 1.2 million images of collapsed buildings with groundtruth depth, surface normals, semantics and camera pose information. We demonstrate the efficacy of our system using experiments from a city scale hyperrealistic simulation environment and in real-world scenarios with collapsed buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Dataset publicly available at http://autoland.cs.uni-freiburg.de.

References

  1. Bachrach, A., He, R., Roy, N.: Autonomous flight in unknown indoor environments. Int. J. Micro Air Veh. 1(4), 217–228 (2009)

    Article  Google Scholar 

  2. Bircher, A., Kamel, M., Alexis, K., et al.: Receding horizon “next-best-view” planner for 3d exploration. In: Proceedings of the IEEE International Conference on Robotics and Automation (2016)

    Google Scholar 

  3. Bloesch, M., et al.: Robust visual inertial odometry using a direct EKF-based approach. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2015)

    Google Scholar 

  4. Bosch, S., et al.: Autonomous detection of safe landing areas for an UAV from monocular images. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2006)

    Google Scholar 

  5. Burri, M., et al.: Real-time visual-inertial mapping, re-localization and planning onboard MAVs in unknown environments. In: IROS (2015)

    Google Scholar 

  6. Desaraju, V.R., Michael, N., et al.: Vision-based landing site evaluation and trajectory generation toward rooftop landing. In: Proceedings of Robotics: Science and Systems (2014)

    Google Scholar 

  7. Falanga, D., Zanchettin, A., Simovic, A., et al.: Vision-based autonomous quadrotor landing on a moving platform. In: IEEE International Symposium on Safety, Security and Rescue Robotics (2017)

    Google Scholar 

  8. Forster, C., et al.: Continuous on-board monocular-vision-based elevation mapping applied to autonomous landing. In: Proceedings of the IEEE International Conference on Robotics and Automation (2015)

    Google Scholar 

  9. Goodrich, M.A., Morse, B.S., Gerhardt, D., et al.: Supporting wilderness search and rescue using a camera-equipped mini UAV. J. Field Robot. 25(1–2), 89–110 (2008)

    Article  Google Scholar 

  10. Grocholsky, B., DeFranco, P., Cover, H., Singh, A., Singh, S.: Robust autonomous ship deck landing for rotorcraft. American Helicopter Society, Forum 72 (2016)

    Google Scholar 

  11. Hinzmann, T., Stastny, T., Cadena, C., Siegwart, R., Gilitschenski, I.: Free LSD: prior-free visual landing site detection for autonomous planes. IEEE Robot. Autom. Lett. 3(3), 2545–2552 (2018)

    Article  Google Scholar 

  12. Hornung, A., Wurm, K.M., Bennewitz, M., et al.: OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robot. 34(3), 189–206 (2013). https://doi.org/10.1007/s10514-012-9321-0

    Article  Google Scholar 

  13. Johnson, A.E., Klumpp, A.R., Collier, J.B., Wolf, A.A.: Lidar-based hazard avoidance for safe landing on Mars. J. Guidance Control Dyn. 25(6), 1091–1099 (2002)

    Article  Google Scholar 

  14. Mittal, M., Valada, A., Burgard, W.: Vision-based autonomous landing in catastrophe-struck environments. In: Workshop on Vision-Based Drones: What’s Next? at the IEEE/RSJ International Conference on Intelligent Robots and Systems (2018)

    Google Scholar 

  15. Murphy, R.R., et al.: Search and rescue robotics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1151–1173. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-30301-5_51

    Chapter  Google Scholar 

  16. Nakagawa, Y., Uchiyama, H., et al.: Estimating surface normals with depth image gradients for fast and accurate registration. In: International Conference on 3D Vision (2015)

    Google Scholar 

  17. Nguyen, C.V., et al.: Modeling kinect sensor noise for improved 3D reconstruction and tracking. In: International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission (2012)

    Google Scholar 

  18. Nieuwenhuisen, M., et al.: Autonomous navigation for micro aerial vehicles in complex GNSS-denied environments. J. Intell. Robot. Syst. 84(1), 199–216 (2016). https://doi.org/10.1007/s10846-015-0274-3

    Article  Google Scholar 

  19. Oleynikova, H., et al.: Voxblox: incremental 3D euclidean signed distance fields for on-board MAV planning. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2017)

    Google Scholar 

  20. Park, J., Kim, Y., Kim, S.: Landing site searching and selection algorithm development using vision system and its application to quadrotor. IEEE T-CST 23(2), 488–503 (2014)

    Google Scholar 

  21. Richter, C., Bry, A., Roy, N.: Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In: Inaba, M., Corke, P. (eds.) Robotics Research. STAR, vol. 114, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28872-7_37

    Chapter  Google Scholar 

  22. Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: high-fidelity visual and physical simulation for autonomous vehicles. In: Hutter, M., Siegwart, R. (eds.) Field and Service Robotics. SPAR, vol. 5, pp. 621–635. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67361-5_40

    Chapter  Google Scholar 

  23. Shi, D., et al.: Design of a small size biquad-UWB-patch-antenna and signal processing for detecting respiration. In: Progress in Electromagnetics Research Symposium - Fall (2017)

    Google Scholar 

  24. Tomic, T., et al.: Toward a fully autonomous UAV: research platform for indoor and outdoor urban search and rescue. IEEE Robot. Autom. Mag. 19(3), 46–56 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work has partly been supported by the Federal Ministry of Education and Research of Germany through the project FOUNT2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhinav Valada .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ppt 642 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mittal, M., Mohan, R., Burgard, W., Valada, A. (2022). Vision-Based Autonomous UAV Navigation and Landing for Urban Search and Rescue. In: Asfour, T., Yoshida, E., Park, J., Christensen, H., Khatib, O. (eds) Robotics Research. ISRR 2019. Springer Proceedings in Advanced Robotics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-95459-8_35

Download citation

Publish with us

Policies and ethics