Skip to main content

Exploration Without Global Consistency Using Local Volume Consolidation

  • Conference paper
  • First Online:
Robotics Research (ISRR 2019)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 20))

Included in the following conference series:

  • 1662 Accesses

Abstract

In exploration, the goal is to build a map of an unknown environment. Most state-of-the-art approaches use map representations that require drift-free state estimates to function properly. Real-world state estimators, however, exhibit drift. In this paper, we present a 2D map representation for exploration that is robust to drift. Rather than a global map, it uses local metric volumes connected by relative pose estimates. This pose-graph does not need to be globally consistent. Overlaps between the volumes are resolved locally, rather than on the faulty estimate of space. We demonstrate our representation with a frontier-based exploration approach, evaluate it under different conditions and compare it with a commonly-used grid-based representation. We show that, at the cost of longer exploration time, using the proposed representation allows full coverage of space even for very large drift in the state estimate, contrary to the grid-based representation. The system is validated in a real world experiment and we discuss its extension to 3D.

Video: A video is available at https://youtu.be/s4Xnet_h4ss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Trivial exceptions, such as disconnected free space, are omitted for brevity.

References

  1. Akdeniz, B.C., Bozma, H.I.: Exploration and topological map building in unknown environments. In: IEEE International Conference Robotics Automation (ICRA), pp. 1079–1084 (2015). https://doi.org/10.1109/icra.2015.7139310

  2. Arandjelović, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: IEEE Conference Computing Vision Pattern Recognition (CVPR), pp. 5297–5307 (2016). https://doi.org/10.1109/CVPR.2016.572

  3. Blöchliger, F., Fehr, M., Dymczyk, M., Schneider, T., Siegwart, R.: Topomap: topological mapping and navigation based on visual SLAM maps. In: IEEE International Conference Robotics Automation (ICRA), pp. 1–9 (2018). https://doi.org/10.1109/ICRA.2018.8460641

  4. Bosse, M., Newman, P., Leonard, J., Soika, M., Feiten, W., Teller, S.: An atlas framework for scalable mapping. In: IEEE International Conference Robotics Automation (ICRA), vol. 2, pp. 1899–1906 (2003). https://doi.org/10.1109/robot.2003.1241872

  5. Caccavale, A., Schwager, M.: Wireframe mapping for resource-constrained robots. In: IEEE/RSJ International Conference Intelligence Robotics System (IROS), pp. 1–9 (2018). https://doi.org/10.1109/IROS.2018.8594057

  6. Cieslewski, T., Kaufmann, E., Scaramuzza, D.: Rapid exploration with multi-rotors: a frontier selection method for high speed flight. In: IEEE/RSJ International Conference Intelligence Robotics System (IROS), pp. 2135–2142 (2017). https://doi.org/10.1109/IROS.2017.8206030

  7. Connolly, C., et al.: The determination of next best views. In: IEEE International Conference Robotics Automation (ICRA), vol. 2, pp. 432–435 (1985)

    Google Scholar 

  8. van Es, S.K., Barfoot, T.D.: Being in two places at once: smooth visual path following on globally inconsistent pose graphs. In: Conference Computing Robot Vision (CRV) (2015). https://doi.org/10.1109/crv.2015.17

  9. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

  10. Furgale, P., Barfoot, T.D.: Visual teach and repeat for long-range rover autonomy. J. Field Robot. 27(5), 534–560 (2010). https://doi.org/10.1002/rob.20342

    Article  Google Scholar 

  11. Gao, X.S., Hou, X.R., Tang, J., Cheng, H.F.: Complete solution classification for the perspective-three-point problem. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 930–943 (2003). https://doi.org/10.1109/TPAMI.2003.1217599

    Article  Google Scholar 

  12. González-Baños, H.H., Latombe, J.C.: Navigation strategies for exploring indoor environments. Int. J. Robot. Res. 21(10–11), 829–848 (2002). https://doi.org/10.1177/0278364902021010834

    Article  Google Scholar 

  13. Greene, W.N., Roy, N.: FLaME: fast lightweight mesh estimation using variational smoothing on delaunay graphs. In: International Conference Computing Vision (ICCV), pp. 4696–4704 (2017). https://doi.org/10.1109/ICCV.2017.502

  14. Holz, D., Basilico, N., Amigoni, F., Behnke, S.: Evaluating the efficiency of frontier-based exploration strategies. In: International Symposium Robotics (ISR), pp. 1–8 (2010)

    Google Scholar 

  15. Howard, A., Parker, L.E., Sukhatme, G.S.: Experiments with a large heterogeneous mobile robot team: exploration, mapping, deployment and detection. Int. J. Robot. Res. 25(5–6), 431–447 (2006). https://doi.org/10.1177/0278364906065378

    Article  Google Scholar 

  16. Howard, A., Sukhatme, G.S., Matarić, M.J.: Multi-robot mapping using manifold representations. Proc. IEEE 94(9), 1360–1369 (2006)

    Article  Google Scholar 

  17. Izadi, S., et al.: KinectFusion: real-time dynamic 3D surface reconstruction and interaction. In: SIGGRAPH, p. 23 (2011)

    Google Scholar 

  18. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: a general framework for graph optimization. In: IEEE International Conference Robotics Automation (ICRA) (2011)

    Google Scholar 

  19. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: International Joint Conference Artificial Intelligence (IJCAI), pp. 674–679 (1981)

    Google Scholar 

  20. Millane, A., Taylor, Z., Oleynikova, H., Nieto, J.I., Siegwart, R., Cadena, C.: TSDF manifolds: a scalable and consistent dense mapping approach. arXiv e-prints (2017). http://arxiv.org/abs/1710.07242

  21. Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: IEEE International Conference Robotics Automation (ICRA), vol. 2, pp. 116–121 (1985). https://doi.org/10.1109/ROBOT.1985.1087316

  22. Oleynikova, H., Millane, A., Taylor, Z., Galceran, E., Nieto, J., Siegwart, R.: Signed distance fields: a natural representation for both mapping and planning. In: RSS Workshop: Geometry and Beyond - Representations, Physics, and Scene Understanding for Robotics (2016)

    Google Scholar 

  23. Papachristos, C., Khattak, S., Alexis, K.: Uncertainty-aware receding horizon exploration and mapping using aerial robots. In: IEEE International Conference Robotics Automation (ICRA), pp. 4568–4575 (2017). https://doi.org/10.1109/ICRA.2017.7989531

  24. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: International Conference Computing Vision (ICCV) (2011)

    Google Scholar 

  25. Schmuck, P., Scherer, S.A., Zell, A.: Hybrid metric-topological 3D occupancy grid maps for large-scale mapping. IFAC PapersOnLine 49(15), 230–235 (2016). https://doi.org/10.1016/j.ifacol.2016.07.738

    Article  Google Scholar 

  26. Sünderhauf, N., Protzel, P.: Switchable constraints for robust pose graph SLAM. In: IEEE/RSJ International Conference Intelligence Robotics System (IROS) (2012)

    Google Scholar 

  27. Teixeira, L., Chli, M.: Real-time mesh-based scene estimation for aerial inspection. In: IEEE/RSJ International Conference Intelligence Robotics System (IROS), pp. 4863–4869 (2016). https://doi.org/10.1109/iros.2016.7759714

  28. Wallgrun, J.O.: Hierarchical Voronoi Graphs: Spatial Representation and Reasoning for Mobile Robots. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-10345-2

  29. Wurm, K.M., Hornung, A., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: a probabilistic, flexible, and compact 3D map representation for robotic systems. In: Proceedings ICRA 2010 Workshop on Best Practice in 3D Perception and Modeling for Mobile Manipulation (2010)

    Google Scholar 

  30. Yamauchi, B.: A frontier-based approach for autonomous exploration. In: IEEE International Conference Robotics Automation (ICRA), pp. 146–151 (1997)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Centre of Competence in Research (NCCR) Robotics through the Swiss National Science Foundation and the SNSF-ERC Starting Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Titus Cieslewski .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ppt 553 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cieslewski, T., Ziegler, A., Scaramuzza, D. (2022). Exploration Without Global Consistency Using Local Volume Consolidation. In: Asfour, T., Yoshida, E., Park, J., Christensen, H., Khatib, O. (eds) Robotics Research. ISRR 2019. Springer Proceedings in Advanced Robotics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-95459-8_34

Download citation

Publish with us

Policies and ethics