Skip to main content

AutoFlow: Hotspot-Aware, Dynamic Load Balancing for Distributed Stream Processing

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13157))

Abstract

Stream applications are widely deployed on the cloud. While modern distributed streaming systems like Flink and Spark Streaming can schedule and execute them efficiently, streaming dataflows are often dynamically changing, which may cause computation imbalance and backpressure.

We introduce AutoFlow, an automatic, hotspot-aware dynamic load balance system for streaming dataflows. It incorporates a centralized scheduler that monitors the load balance in the entire dataflow dynamically and implements state migrations correspondingly. The scheduler achieves these two tasks using a simple asynchronous distributed control message mechanism and a hotspot-diminishing algorithm. The timing mechanism supports implicit barriers and a highly efficient state-migration without global barriers or pauses to operators. It also supports a time-window based load-balance measurement and feeds them to the hotspot-diminishing algorithm without user interference. We implemented AutoFlow on top of Ray, an actor-based distributed execution framework. Our evaluation based on various streaming benchmark datasets shows that AutoFlow achieves good load-balance and incurs a low latency overhead in a highly data-skew workload.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. gRPC. https://grpc.io/

  2. NEXMark benchmark. http://datalab.cs.pdx.edu/niagara/NEXMark/

  3. Akidau, T., et al.: MillWheel: fault-tolerant stream processing at internet scale. Proc. VLDB Endow. 6(11), 1033–1044 (2013)

    Article  Google Scholar 

  4. Akidau, T., et al.: The dataflow model: a practical approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data processing (2015)

    Google Scholar 

  5. Armbrust, M., et al.: Structured streaming: a declarative API for real-time applications in apache spark. In: International Conference on Management of Data, pp. 601–613 (2018)

    Google Scholar 

  6. Carbone, P., Fóra, G., Ewen, S., Haridi, S., Tzoumas, K.: Lightweight asynchronous snapshots for distributed dataflows. arXiv preprint arXiv:1506.08603 (2015)

  7. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.: Apache Flink: stream and batch processing in a single engine. Bull. IEEE Comput. Soc. Tech. Committee Data Eng. 36(4) (2015)

    Google Scholar 

  8. Castro Fernandez, R., Migliavacca, M., Kalyvianaki, E., Pietzuch, P.: Integrating scale out and fault tolerance in stream processing using operator state management. In: ACM SIGMOD International Conference on Management of Data, pp. 725–736 (2013)

    Google Scholar 

  9. Dai, J., Huang, J., Huang, S., Huang, B., Liu, Y.: HiTune: dataflow-based performance analysis for big data cloud. In: ATC, pp. 87–100 (2011)

    Google Scholar 

  10. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  11. Floratou, A., Agrawal, A., Graham, B., Rao, S., Ramasamy, K.: Dhalion: self-regulating stream processing in heron. Proc. VLDB Endow. 10(12), 1825–1836 (2017)

    Article  Google Scholar 

  12. Garduno, E., Kavulya, S.P., Tan, J., Gandhi, R., Narasimhan, P.: Theia: visual signatures for problem diagnosis in large Hadoop clusters. In: LISA’12, pp. 33–42 (2012)

    Google Scholar 

  13. Hoffmann, M., et al.: SnailTrail: generalizing critical paths for online analysis of distributed dataflows. In: NSDI’18, pp. 95–110 (2018)

    Google Scholar 

  14. Hoffmann, M., Lattuada, A., McSherry, F.: Megaphone: latency-conscious state migration for distributed streaming dataflows. Proc. VLDB Endow. 12(9), 1002–1015 (2019)

    Article  Google Scholar 

  15. Kalavri, V., Liagouris, J., Hoffmann, M., Dimitrova, D., Forshaw, M., Roscoe, T.: Three steps is all you need: fast, accurate, automatic scaling decisions for distributed streaming dataflows. In: OSDI’18, pp. 783–798 (2018)

    Google Scholar 

  16. Kulkarni, S., et al.: Twitter Heron: stream processing at scale. In: the 2015 ACM SIGMOD International Conference on Management of Data, pp. 239–250 (2015)

    Google Scholar 

  17. Mai, L., et al.: Chi: a scalable and programmable control plane for distributed stream processing systems. Proc. VLDB Endow. 11(10), 1303–1316 (2018)

    Article  Google Scholar 

  18. Moritz, P., et al.: Ray: a distributed framework for emerging \(\{\)AI\(\}\) applications. In: OSDI’18, pp. 561–577 (2018)

    Google Scholar 

  19. Toshniwal, A., et al.: Storm@ twitter. In: ACM SIGMOD International Conference on Management of Data, pp. 147–156 (2014)

    Google Scholar 

  20. Wang, S., et al.: Lineage stash: fault tolerance off the critical path. In: SOSP’19, pp. 338–352 (2019)

    Google Scholar 

  21. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc., Newton (2012)

    Google Scholar 

  22. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: NSDI’12, pp. 15–28 (2012)

    Google Scholar 

  23. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams: fault-tolerant streaming computation at scale. In: SOSP’13, pp. 423–438 (2013)

    Google Scholar 

Download references

Acknowlegement

The authors would like to thank all the reviewers for their valuable comments. This work is supported by National Key R&D Program of China under Grant No. 2016YFB0200803; the National Natural Science Foundation of China under Grant No. 61972376, No. 62072431, No. 62032023; the Science Foundation of Beijing No. L182053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, P., Yue, Y., Yuan, L., Zhang, Y. (2022). AutoFlow: Hotspot-Aware, Dynamic Load Balancing for Distributed Stream Processing. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2021. Lecture Notes in Computer Science(), vol 13157. Springer, Cham. https://doi.org/10.1007/978-3-030-95391-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95391-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95390-4

  • Online ISBN: 978-3-030-95391-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics