Skip to main content

Molecular Mechanisms of 5-HT1F Receptor Agonists

  • Chapter
  • First Online:
Novel Synthetic Drugs in Migraine

Part of the book series: Headache ((HEAD))

  • 313 Accesses

Abstract

Serotonin (5-hydroxytriptamine, 5-HT) and its receptors have been long involved in migraine and its treatment. The first evidence of a serotonin role in migraine pathophysiology and its possible exploitation for therapeutic purposes dates more than 50 years ago. In the last decades, pharmacological research in the field searched for an increased selectivity of active principles to specific receptor subtypes involved in migraine mechanism. Currently, the 5-HT1F receptor agonists, also known as ditans, represent the most innovative class of the drugs targeting the serotoninergic system to treat migraine. Updated evidence suggests that ditans exert their antimigraine effects by modulating the trigeminovascular system, while devoid of cardiovascular safety drawbacks shared by previous antimigraine drugs targeting 5-HT receptors, namely ergot-derivatives and triptans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erspamer V. Experimental research on the biological significance of enterochromaffin cells. Arch Fisiol. 1937;37:156–9.

    Google Scholar 

  2. Erspamer V, Vialli M. Ricerche sul secreto delle cellule enterocromaffini. Boll d Soc Med-chir Pavia. 1937;51:357–63.

    Google Scholar 

  3. Whitaker-Azmitia P. The discovery of serotonin and its role in neuroscience. Neuropsychopharmacology. 1999;21:2–8.

    Article  Google Scholar 

  4. Rapport MM, Green AA, Page IH. Partial purification of the vasoconstrictor in beef serum. J Biol Chem. 1948;174:735–8.

    Article  CAS  PubMed  Google Scholar 

  5. Rapport MM, Green AA, Page IH. Crystalline serotonin. Science. 1948;108:329–30.

    Article  CAS  PubMed  Google Scholar 

  6. Rapport MM. Serum vasoconstrictor (serotonin). V. The presence of creatinine in the complex: a proposed structure of the vasoconstrictor principle. J Biol Chem. 1949;180:961–9.

    Article  CAS  PubMed  Google Scholar 

  7. Erspamer V, Asero B. Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature. 1952;169:800–1.

    Article  CAS  PubMed  Google Scholar 

  8. Garattini S, Valzelli L. Serotonin. Amsterdam: Elsevier Publishing Company; 1965.

    Google Scholar 

  9. Aghajanian GK, Sanders-Bush E. In: Davis KL, Charney D, Coyle JT, Nemeroff C, editors. Neuropsychopharmacology - the fifth generation of progress. New York: Lippincott, Williams & Wilkins; 2002.

    Google Scholar 

  10. Nichols DE, Nichols CD. Serotonin receptors. Chem Rev. 2008;108:1614–41.

    Article  CAS  PubMed  Google Scholar 

  11. Fargin A, Raymond JR, Lohse MJ, Kobilka BK, Caron MG, Lefkowitz R. The genomic clone G-21 which resembles a beta-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature. 1988;335:358–60.

    Article  CAS  PubMed  Google Scholar 

  12. Hoyer D, Hannon JP, Martin GR. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav. 2002;71(4):533–54.

    Article  CAS  PubMed  Google Scholar 

  13. Fredriksson R, Lagerström MC, Lundin L, Schiöth HB. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol. 2003;63:1256–72.

    Article  CAS  PubMed  Google Scholar 

  14. Nilsson T, Longmore J, Shaw D, Olesen IJ, Edvinsson L. Contractile 5-HT1B receptors in human cerebral arteries: pharmacological characterization and localization with immunocytochemistry. Br J Pharmacol. 1999;128:1133–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Razzaque Z, Pickard JD, Ma QP, et al. 5-HT1B-receptors and vascular reactivity in human isolated blood vessels: assessment of the potential craniovascular selectivity of sumatriptan. Br J Clin Pharmacol. 2002;53(3):266–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boschert U, Amara DA, Segu L, Hen R. The mouse 5-hydroxytryptamine 1B receptor is localized predominantly on axon terminals. Neuroscience. 1994;58:167–82.

    Article  CAS  PubMed  Google Scholar 

  17. Castro ME, Pascual J, Romon T, del Arco C, del Olmo E, Pazos A. Differential distribution of [3H]sumatriptan binding sites (5-HT1B, 5-HT1D and 5-HT1F receptors) in human brain: focus on brainstem and spinal cord. Neuropharmacology. 1997;36:535–42.

    Article  CAS  PubMed  Google Scholar 

  18. Smith D, Hill RG, Edvinsson L, Longmore J. An immunocytochemical investigation of human trigeminal nucleus caudalis: CGRP, substance P and 5-HT1D-receptor immunoreactivities are expressed by trigeminal sensory fibres. Cephalalgia. 2002;22:424–31.

    Article  CAS  PubMed  Google Scholar 

  19. Hargreaves RJ, Shepheard SL. Pathophysiology of migraine: new insights. Can J Neurol Sci. 1999;26:S12–9.

    Article  PubMed  Google Scholar 

  20. De Vries P, Villalon CM, Saxena PR. Pharmacological aspects of experimental headache models in relation to acute antimigraine therapy. Eur J Pharmacol. 1999;375:61–74.

    Article  PubMed  Google Scholar 

  21. Adham N, Kao HT, Schecter LE, Bard J, Olsen M, Urquhart D, et al. Cloning of another human serotonin receptor (5-HT1F): a fifth 5-HT1 receptor subtype coupled to the inhibition of adenylate cyclase. Proc Natl Acad Sci U S A. 1993;90:408–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pascual J, Del Arco C, Romon T, Del Olmo E, Pazos A. [3H]Sumatriptan binding sites in human brain: regional-dependent labelling of 5-HT1D and 5-HT1F receptors. Eur J Pharmacol. 1996;295:271–4.

    Article  CAS  PubMed  Google Scholar 

  23. Ramadan NM, Skljarevski V, Phebus LA, Johnson KW. 5-HT1F receptor agonists in acute migraine treatment: a hypothesis. Cephalalgia. 2003;23:776–85.

    Article  CAS  PubMed  Google Scholar 

  24. Amrutkar DV, Ploug KB, Hay-Schmidt A, Porreca F, Olesen J, Jansen-Olesen I. mRNA expression of 5-hydroxytryptamine 1B, 1D, and 1F receptors and their role in controlling the release of calcitonin gene-related peptide in the rat trigeminovascular system. Pain. 2012;153:830–8.

    Article  CAS  PubMed  Google Scholar 

  25. Kimball RW, Friedman AP, Vallejo E. Effect of serotonin in migraine patients. Neurology. 1960;10:107–11.

    Article  CAS  PubMed  Google Scholar 

  26. Sicuteri F, Testi A, Anselmi B. Biochemical investigations in headache: increase in the hydroxyindoleacetic acid excretion during migraine attacks. Int Arch Allergy. 1961;19:55–8.

    Article  CAS  Google Scholar 

  27. Haddjeri N, Seletti B, Gilbert F, et al. Effect of ergotamine on serotonin-mediated responses in the rodent and human brain. Neuropsychopharmacology. 1998;19:365–80.

    Article  CAS  PubMed  Google Scholar 

  28. Graham JR, Wolff HG. Mechanisms of migraine headache and action of ergotamine tartrate. Arch Neurol Psychiatr. 1938;39:737–63.

    Article  CAS  Google Scholar 

  29. Humphrey PP. The discovery and development of the triptans, a major therapeutic breakthrough. Headache. 2008;48:685–7.

    Article  PubMed  Google Scholar 

  30. Feniuk W, Humphrey PP, Perren MJ. The selective carotid arterial vasoconstrictor action of GR43175 in anaesthetised dogs. Br J Pharmacol. 1989;96:83–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Friberg L, Olesen J, Iversen HK, Sperling B. Migraine pain associated with middle cerebral artery dilatation: reversal by sumatriptan. Lancet. 1991;338:13–7.

    Article  CAS  PubMed  Google Scholar 

  32. Humphrey PP, Feniuk W. Mode of action of the antimigraine drug sumatriptan. Trends Pharmacol Sci. 1991;12:444–6.

    Article  CAS  PubMed  Google Scholar 

  33. Ashina M, Hansen JM, Do TP, Melo-Carrillo A, Burstein R, Moskowitz MA. Migraine and the trigeminovascular system-40 years and counting. Lancet Neurol. 2019;18:795–804.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Edvinsson L, Haanes KA. Identifying new antimigraine targets: lessons from molecular biology. Trends Pharmacol Sci. 2021;42:217–25.

    Article  CAS  PubMed  Google Scholar 

  35. Gupta S, Akerman S, van den Maagdenberg A, Saxena P, Goadsby P, MaassenVanDenBrink A. Intravital microscopy on a closed cranial window in mice: a model to study trigeminovascular mechanisms involved in migraine. Cephalalgia. 2006;26:1294–303.

    Article  CAS  PubMed  Google Scholar 

  36. Rubio-Beltrán E, Haanes K, Labastida A, de Vries R, Danser J, Michael G, et al. Lasmiditan and sumatriptan: comparison of in vivo vascular constriction in the dog and in vitro contraction of human arteries. Cephalalgia. 2016;36:104–5.

    Google Scholar 

  37. MaassenVanDenBrink A, van den Broek RW, de Vries R, Bogers AJ, Avezaat CJ, Saxena PR. Craniovascular selectivity of eletriptan and sumatriptan in human isolated blood vessels. Neurology. 2000;55:1524–30.

    Article  CAS  PubMed  Google Scholar 

  38. Gomez-Mancilla B, Cutler NR, Leibowitz MT, Spierings EL, Klapper JA, Diamond S, Goldstein J, Smith T, Couch JR, Fleishaker J, Azie N, Blunt DE. Safety and efficacy of PNU-142633, a selective 5-HT1D agonist, in patients with acute migraine. Cephalalgia. 2001;21:727–32.

    Article  CAS  PubMed  Google Scholar 

  39. Phebus LA, Johnson KW, Zgombick JM, Gilbert PJ, Van Belle K, Mancuso V, et al. Characterization of LY344864 as a pharmacological tool to study 5-HT1F receptors: binding affinities, brain penetration and activity in the neurogenic dural inflammation model of migraine. Life Sci. 1997;61:2117–26.

    Article  CAS  PubMed  Google Scholar 

  40. Glennon RA, Dukat M. Serotonin receptors and drugs affecting serotonergic neurotransmission. In: Lemke TL, Williams DA, editors. Foye’s principles of medicinal chemistry, vol. 6. Philadelphia: Lippincott Williams & Wilkins; 2002. p. 365–96.

    Google Scholar 

  41. Wainscott DB, Krushinski JH Jr, Audia JE, Schaus JM, Zgombick JM, Lucaites VL, et al. [3H]LY334370, a novel radioligand for the 5-HT1F receptor. I. In vitro characterization of binding properties. Naunyn Schmiedeberg’s Arch Pharmacol. 2005;371:169–77.

    Article  CAS  Google Scholar 

  42. Nelson DL, Phebus LA, Johnson KW, Wainscott DB, Cohen ML, Calligaro DO, et al. Preclinical pharmacological profile of the selective 5-HT1F receptor agonist lasmiditan. Cephalalgia. 2010;30:1159–69.

    Article  PubMed  Google Scholar 

  43. Hoffmann J, Goadsby PJ. Emerging targets in migraine. CNS Drugs. 2014;28:11–7.

    Article  CAS  PubMed  Google Scholar 

  44. Goldstein DJ, Roon KI, Offen WW, Ramadan NM, Phebus LA, Johnson KW, et al. Selective seratonin 1F (5-HT (1F)) receptor agonist LY334370 for acute migraine: a randomised controlled trial. Lancet. 2001;358:1230–4.

    Article  CAS  PubMed  Google Scholar 

  45. Johnson KW, Schaus JM, Durkin MM, Audia JE, Kaldor SW, Flaugh ME, et al. 5-HT1F receptor agonists inhibit neurogenic dural inflammation in guinea pigs. Neuroreport. 1997;8:2237–9.

    Article  CAS  PubMed  Google Scholar 

  46. Storer RJ, Goadsby PJ. 5-ht1F agonists inhibit nociceptive transmission at the trigeminocervical complex. Cephalalgia. 2011;31:9–10.

    Google Scholar 

  47. Mitsikostas DD, Sánchez Del Río M, Waebe C. 5-Hydroxytryptamine1B/1D and 5-hydroxytryptamine1F receptors inhibit capsaicin-induced c-fos immunoreactivity within mouse trigeminal nucleus caudalis. Cephalalgia. 2002;22:384–94.

    Article  CAS  PubMed  Google Scholar 

  48. Mitsikostas DD, Sánchez del Río M, Moskowitz MA, Waeber C. Both 5-HT1B and 5-HT1F receptors modulate c-fos expression within rat trigeminal nucleus caudalis. Eur J Pharmacol. 1999;369:271–7.

    Article  CAS  PubMed  Google Scholar 

  49. Shepheard S, Edvinsson L, Cumberbatch M, Williamson D, Mason G, Webb J, et al. Possible antimigraine mechanisms of action of the 5HT1F receptor agonist LY334370. Cephalalgia. 1999;19:851–8.

    Article  CAS  PubMed  Google Scholar 

  50. Vila-Pueyo M, Strother L, Page K, Loaraine H, Kovalchin J, Goadsby PJ, et al. Lasmiditan inhibits trigeminovascular nociceptive transmission. Cephalalgia. 2016;36:152–3.

    Google Scholar 

  51. Goadsby PJ, Classey JD. Evidence for serotonin (5-HT)1B, 5-HT1D and 5-HT1F receptor inhibitory effects on trigeminal neurons with craniovascular input. Neuroscience. 2003;122:491–8.

    Article  CAS  PubMed  Google Scholar 

  52. Haanes KA, Edvinsson L. Pathophysiological mechanisms in migraine and the identification of new therapeutic targets. CNS Drugs. 2019;33:525–37.

    Article  CAS  PubMed  Google Scholar 

  53. Bhave G, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RW. cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron. 2002;35:721–31.

    Article  CAS  PubMed  Google Scholar 

  54. González-Hernández A. The 5-HT1 receptors inhibiting the rat vasodepressor sensory CGRPergic outflow: further involvement of 5-HT1F, but not 5-HT1A or 5-HT1D, subtypes. Eur J Pharmacol. 2011;659:233–43.

    Article  PubMed  CAS  Google Scholar 

  55. Labastida-Ramírez A, Rubio-Beltrán E, Garrelds IM, Haanes KA, Chan KY, Kovalchin J, et al. Lasmiditan inhibits CGRP release in the mouse trigeminovascular system. Cephalalgia. 2017;37:362–3.

    Google Scholar 

  56. Labastida-Ramirez A, Rubio-Beltran E, Haanes KA, Chan KY, Garrelds IM, Johnson KW, et al. Lasmiditan inhibits calcitonin gene-related peptide release in the rodent trigeminovascular system. Pain. 2020;161:1092–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cohen ML, Schenck K. 5-Hydroxytryptamine (1F) receptors do not participate in vasoconstriction: lack of vasoconstriction to LY344864, a selective serotonin (1F) receptor agonist in rabbit saphenous vein. J Pharmacol Exp Ther. 1999;290:935–9.

    CAS  PubMed  Google Scholar 

  58. Rubio-Beltrán E, Labastida-Ramírez A, Haanes KA, van den Bogaerdt A, Bogers AJJC, Zanelli E, Meeus L, Danser AHJ, Gralinski MR, Senese PB, Johnson KW, Kovalchin J, Villalón CM, MaassenVanDenBrink A. Characterization of binding, functional activity, and contractile responses of the selective 5-HT1F receptor agonist lasmiditan. Br J Pharmacol. 2019;176:4681–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Wainscott DB, Johnson KW, Phebus LA, Schaus JM, Nelson DL. Human 5-HT1F receptor-stimulated [35S] GTPgamma S binding: correlation with inhibition of Guinea pig dural plasma protein extravasation. Eur J Pharmacol. 1998;352:117–24.

    Article  CAS  PubMed  Google Scholar 

  60. Gibbs WS, Garrett SM, Beeson CC, Schnellmann RG. Identification of dual mechanisms mediating 5-hydroxytryptamine receptor 1F-induced mitochondrial biogenesis. Am J Physiol Renal Physiol. 2018;314:F260–8.

    Article  PubMed  CAS  Google Scholar 

  61. Dupre TV, Jenkins DP, Muise-Helmericks RC, Schnellmann RG. The 5-hydroxytryptamine receptor 1F stimulates mitochondrial biogenesis and angiogenesis in endothelial cells. Biochem Pharmacol. 2019;169:113644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gibbs WS, Collier JB, Morris M, Beeson CC, Megyesi J, Schnellmann RG. 5-HT 1F receptor regulates mitochondrial homeostasis and its loss potentiates acute kidney injury and impairs renal recovery. Am J Physiol Renal Physiol. 2018;315:F1119–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Simmons EC, Scholpa NE, Cleveland KH, Schnellmann RG. 5-Hydroxytryptamine 1F receptor agonist induces mitochondrial biogenesis and promotes recovery from spinal cord injury. J Pharmacol Exp Ther. 2020;372:216–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Scholpa NE, Lynn MK, Corum D, Heather AB, Schnellmann RG. 5-HT1F receptor-mediated mitochondrial biogenesis for the treatment of Parkinson’s disease. Br J Pharmacol. 2018;175:348–58.

    Article  CAS  PubMed  Google Scholar 

  65. Garrett SM, Whitaker RM, Beeson CC, Schnellmann RG. Agonism of the 5-hydroxytryptamine 1F receptor promotes mitochondrial biogenesis and recovery from acute kidney injury. J Pharmacol Exp Ther. 2014;350:257–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Wilbraham D, Berg PH, Tsai M, Liffick E, Loo LS, Doty EG, Sellers E. Abuse potential of lasmiditan: a phase 1 randomized, placebo- and alprazolam-controlled crossover study. J Clin Pharmacol. 2020;60:495–504.

    Article  CAS  PubMed  Google Scholar 

  67. Saengjaroentham C, Strother LC, Dripps I, et al. Differential medication overuse risk of novel anti-migraine therapeutics. Brain. 2020;143:2681–28.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Shahidi S, Sadeghian R, Komaki A, Asl SS. Intracerebroventricular microinjection of the 5-HT1F receptor agonist LY344864 inhibits methamphetamine conditioned place preference reinstatement in rats. Pharmacol Biochem Behav. 2018;173:27–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Benemei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benemei, S. (2022). Molecular Mechanisms of 5-HT1F Receptor Agonists. In: Martelletti, P., Edvinsson, L. (eds) Novel Synthetic Drugs in Migraine. Headache. Springer, Cham. https://doi.org/10.1007/978-3-030-95334-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95334-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95333-1

  • Online ISBN: 978-3-030-95334-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics