Skip to main content

CCA Secure A Posteriori Openable Encryption in the Standard Model

  • Conference paper
  • First Online:
Topics in Cryptology – CT-RSA 2022 (CT-RSA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13161))

Included in the following conference series:

  • 789 Accesses

Abstract

A Posteriori Openable Public Key Encryptions (APOPKE) allow any user to generate a constant-size key that decrypts the messages they have sent over a chosen period of time. As an important feature, the period can be dynamically chosen after the messages have been sent. This primitive was introduced in 2016 by Bultel and Lafourcade. They also defined the Chosen-Plaintext Attack (CPA) security for APOPKE, and designed a scheme called GAPO, which is CPA secure in the random oracle model. In this paper, we formalize the Chosen-Ciphertext Attack (CCA) security for APOPKE, then we design a scheme called CHAPO (for CHosen-ciphetext attack resistant A Posteriori Openable encryption), and we prove its CCA security in the standard model. CHAPO is approximately twice as efficient as GAPO and is more generic. We also give news applications, and discuss the practical impact of its CCA security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arfaoui, G., et al.: How to (Legally) keep secrets from mobile operators. In: Bertino, E., Shulman, H., Waidner, M. (eds.) ESORICS 2021. LNCS, vol. 12972, pp. 23–43. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88418-5_2

    Chapter  Google Scholar 

  2. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_1

    Chapter  Google Scholar 

  3. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. In FOCS. IEEE (1997)

    Google Scholar 

  4. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable encryption from constrained cryptographic primitives. In: ACM CCS. ACM (2017)

    Google Scholar 

  5. Bultel, X.: CCA secure a posteriori openable encryption in the standard model. Cryptology ePrint Archive, Report 2021/1504 (2021). https://ia.cr/2021/1504

  6. Bultel, X., Lafourcade, P.: A posteriori openable public key encryption. In: Hoepman, J.-H., Katzenbeisser, S. (eds.) SEC 2016. IAICT, vol. 471, pp. 17–31. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33630-5_2

    Chapter  Google Scholar 

  7. Choi, G., Vaudenay, S.: Timed-release encryption with master time bound key. In: You, I. (ed.) WISA 2019. LNCS, vol. 11897, pp. 167–179. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39303-8_13

    Chapter  Google Scholar 

  8. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal security analysis of the signal messaging protocol. In: EuroS&P 2017 (2017)

    Google Scholar 

  9. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_5

    Chapter  Google Scholar 

  10. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)

    Article  MathSciNet  Google Scholar 

  11. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: 45th ACM STOC. ACM Press (2013)

    Google Scholar 

  12. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

    Article  MathSciNet  Google Scholar 

  13. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: CCS 206. ACM (2006)

    Google Scholar 

  14. Han, K., Yeun, C.Y., Shon, T., Park, J.H., Kim, K.: A scalable and efficient key escrow model for lawful interception of IDBC-based secure communication. Int. J. Commun. Syst. 24(4), 461–472 (2011)

    Article  Google Scholar 

  15. Hwang, Y.H., Yum, D.H., Lee, P.J.: Timed-release encryption with pre-open capability and its application to certified E-mail system. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 344–358. Springer, Heidelberg (2005). https://doi.org/10.1007/11556992_25

    Chapter  Google Scholar 

  16. Ishizaka, M., Kiyomoto, S.: Time-specific encryption with constant-size secret-keys secure under standard assumption. Cryptology ePrint Archive, Report 2020/595 (2020). https://eprint.iacr.org/2020/595

  17. Kasamatsu, K., Matsuda, T., Emura, K., Attrapadung, N., Hanaoka, G., Imai, H.: Time-specific encryption from forward-secure encryption: generic and direct constructions. Int. J. Inf. Secur. 15(5), 549–571 (2015). https://doi.org/10.1007/s10207-015-0304-y

    Article  MATH  Google Scholar 

  18. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: ACM CCS. ACM (2013)

    Google Scholar 

  19. Martin, K.M.: Increasing efficiency of International key escrow in mutually mistrusting domains. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 221–232. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024467

    Chapter  Google Scholar 

  20. May, T.: Time-release crypto. Manuscript (1993)

    Google Scholar 

  21. Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the McEliece cryptosystem without random oracles. Des Codes Crypt. 49, 289–305 (2008)

    Article  MathSciNet  Google Scholar 

  22. Paterson, K.G., Quaglia, E.A.: Time-specific encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 1–16. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-4_1

    Chapter  Google Scholar 

  23. Rogaway, P.: Authenticated-encryption with associated-data. In: CCS. ACM (2002)

    Google Scholar 

  24. Shamir, A.: Partial key escrow: a new approach to software key escrow. In: Presented at Key Escrow Conference (1995)

    Google Scholar 

  25. Wang, Z., Ma, Z., Luo, S., Gao, H.: Key escrow protocol based on a tripartite authenticated key agreement and threshold cryptography. IEEE Access 7, 149080–149096 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Angèle Bossuat and David Gérault for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Bultel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bultel, X. (2022). CCA Secure A Posteriori Openable Encryption in the Standard Model. In: Galbraith, S.D. (eds) Topics in Cryptology – CT-RSA 2022. CT-RSA 2022. Lecture Notes in Computer Science(), vol 13161. Springer, Cham. https://doi.org/10.1007/978-3-030-95312-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95312-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95311-9

  • Online ISBN: 978-3-030-95312-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics