Skip to main content

Drought Management

  • Chapter
  • First Online:
Water and Wastewater Management

Part of the book series: Water and Wastewater Management ((WWWE))

Abstract

Drought is a phenomenon that adversely affects a great variety of human activities in virtually all climatic regions. Drought is defined as a period that a region experiences below normal precipitation. Drought can last for days, weeks, months, and years. The period of drought lasts longer, the affects get greater. Drought is a natural disaster that should be managed by implementing sustainable disaster management strategies. National drought plans are of great importance to reduce impacts of drought phenomena. This chapter aims to provide a brief summary about drought management under changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang X, Chen YF, Xia J, Yang QC. Impacts of climate change on the availability of water resources and water resources planning. Conference Impacts of climate change on the availability of water resources and water resources planning, Hohai Univ, Nanjing, Peoples R China vol. 350. Int Assoc Hydrological Sciences; 2011. p. 324.

    Google Scholar 

  2. Yang N, Men BH, Lin CK. Impact analysis of climate change on water resources. Conference Impact analysis of climate change on water resources, Nanjing, Peoples R China vol. 24. Elsevier Science Bv; 2011. p. 643–8.

    Google Scholar 

  3. Kundzewicz ZW, Krysanova V, Benestad RE, Hov O, Piniewski M, Otto IM. Uncertainty in climate change impacts on water resources. Environ Sci Policy. 2018;79:1–8.

    Article  Google Scholar 

  4. Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, et al. Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA. 2005;102(42):15144.

    Article  CAS  Google Scholar 

  5. Madadgar S, AghaKouchak A, Farahmand A, Davis SJ. Probabilistic estimates of drought impacts on agricultural production. Geophys Res Lett. 2017;44(15):7799–807.

    Article  Google Scholar 

  6. Tabari H. Climate change impact on flood and extreme precipitation increases with water availability. Sci Rep. 2020;10(1):13768.

    Article  CAS  Google Scholar 

  7. Van Loon AF, Gleeson T, Clark J, Van Dijk A, Stahl K, Hannaford J, et al. Drought in the anthropocene. Nat Geosci. 2016;9(2):89–91.

    Article  Google Scholar 

  8. Bachmair S, Stahl K, Collins K, Hannaford J, Acreman M, Svoboda M, et al. Drought indicators revisited: the need for a wider consideration of environment and society. Wiley Interdiscip Rev-Water. 2016;3(4):516–36.

    Article  Google Scholar 

  9. Kchouk S, Melsen LA, Walker DW, van Oel PR. A review of drought indices: predominance of drivers over impacts and the importance of local context. Nat Hazards Earth Syst Sci Discuss. 2021;2021:1–28.

    Google Scholar 

  10. Droughts KG. Annu Rev Environ Resour. 2008;33(1):85–118.

    Article  Google Scholar 

  11. Wilhite DA, Glantz MH. Understanding: the drought phenomenon: the role of definitions. Water Int. 1985;10(3):111–20.

    Article  Google Scholar 

  12. Maliva R, Missimer T. Aridity and drought. Environmental science and engineering (Subseries: Environmental science); 2012. p. 21–39.

    Google Scholar 

  13. Wood EF, Schubert SD, Wood AW, Peters-Lidard CD, Mo KC, Mariotti A, et al. Prospects for advancing drought understanding, monitoring, and prediction. J Hydrometeorol. 2015;16(4):1636–57.

    Article  Google Scholar 

  14. Santos MA. Regional droughts—a stochastic characterization. J Hydrol. 1983;66(1–4):183–211.

    Article  Google Scholar 

  15. Chang TJ, Kleopa XA. A proposed method for drought monitoring. Water Resour Bull. 1991;27(2):275–81.

    Article  Google Scholar 

  16. Mishra AK, Singh VP. A review of drought concepts. J Hydrol. 2010;391(1):202–16.

    Article  Google Scholar 

  17. Estrela MJ, Penarrocha D, Millan M. Multi-annual drought episodes in the Mediterranean (Valencia region) from 1950–1996. A spatio-temporal analysis. Int J Climatol. 2000;20(13):1599–618.

    Article  Google Scholar 

  18. Dracup JA, Lee KS, Paulson EG. On the statistical characteristics of drought events. Water Resour Res. 1980;16(2):289–96.

    Article  Google Scholar 

  19. Mohan S, Rangacharya NCV. A modified method for drought identification. Hydrol Sci J-J Sci Hydrol. 1991;36(1):11–21.

    Article  Google Scholar 

  20. Clausen B, Pearson CP. Regional frequency-analysis of annual maximum streamflow drought. J Hydrol. 1995;173(1–4):111–30.

    Article  Google Scholar 

  21. Rhee J, Im J, Carbone GJ. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens Environ. 2010;114(12):2875–87.

    Article  Google Scholar 

  22. Zargar A, Sadiq R, Naser B, Khan FI. A review of drought indices. Environ Rev. 2011;19:333–49.

    Article  Google Scholar 

  23. Mannocchi F, Todisco F, Vergni L. Agricultural drought: indices, definition and analysis. Conference Agricultural drought: indices, definition and analysis, Rome Headquarters Italian National Res Council, Rome, ITALY. Int Assoc Hydrological Sciences; 2004. p. 246–54.

    Google Scholar 

  24. Liu SN, Shi HY, Sivakumar B. Socioeconomic drought under growing population and changing climate: a new index considering the resilience of a regional water resources system. J Geophys Res-Atmos. 2020;125(15):21.

    Article  Google Scholar 

  25. Shi HY, Chen J. Characteristics of climate change and its relationship with land use/cover change in Yunnan Province, China. Int J Climatol. 2018;38(5):2520–37.

    Article  Google Scholar 

  26. Tu XJ, Wu HO, Singh VP, Chen XH, Lin KR, Xie YT. Multivariate design of socioeconomic drought and impact of water reservoirs. J Hydrol. 2018;566:192–204.

    Article  Google Scholar 

  27. McKee TB, Doesken NJ, Kleist J. The relationship of drought frequency and duration to time scales. In: Eighth Conference on applied climatology; 1993. pp. 179–84.

    Google Scholar 

  28. Edwards DC. Characteristics of 20th century drought in the United States at multiple time scales. Conference characteristics of 20th century drought in the United States at multiple time scales.

    Google Scholar 

  29. Mishra AK, Singh VP. Analysis of drought severity-area-frequency curves using a general circulation model and scenario uncertainty. J Geophys Res-Atmos. 2009;114:18.

    Article  Google Scholar 

  30. Palmer WC. Meteorologic drought. US Department of Commerce, Weather Bureau. Research Paper No: 45; 1965. p. 58.

    Google Scholar 

  31. Kim TW, Valdes JB. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. J Hydrol Eng. 2003;8(6):319–28.

    Article  Google Scholar 

  32. Dai A, Trenberth KE, Qian TT. A global dataset of palmer drought severity index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol. 2004;5(6):1117–30.

    Article  Google Scholar 

  33. Alley WM. The palmer drought severity index - limitations and assumptions. J Climate Appl Meteorol. 1984;23(7):1100–9.

    Article  Google Scholar 

  34. Willeke G, Hosking JRM, Wallis JR, Guttman NB. The national drought atlas. Institute for Water Resources Report 94-NDS-4, US Army Corps of Engineers; 1994.

    Google Scholar 

  35. Nikbakht J, Tabari H, Talaee PH. Streamflow drought severity analysis by percent of normal index (PNI) in northwest Iran. Theor Appl Climatol. 2013;112(3–4):565–73.

    Article  Google Scholar 

  36. Boughton WC. Multi-year streamflow drought in eastern Australia. Aust J Water Resour. 2009;13(1):31–42.

    Google Scholar 

  37. Shafer BA, Dezman LE. Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. In: 50th annual western snow conference. Reno, Nevada; 1982.

    Google Scholar 

  38. Hoekema DJ, Sridhar V. Relating climatic attributes and water resources allocation: a study using surface water supply and soil moisture indices in the Snake River basin, Idaho. Water Resour Res. 2011;47:17.

    Article  Google Scholar 

  39. Jang SH, Lee J-K, Oh JH, Jo JW, Cho Y. The probabilistic drought prediction using the improved surface water supply index in the Korean peninsula. Hydrol Res. 2018;50(1):393–415.

    Article  Google Scholar 

  40. Palmer WC. keeping track of crop moisture conditions, nationwide: the new crop moisture index. Weatherwise. 1968;21(4):156–61.

    Article  Google Scholar 

  41. Heim RR. A review of twentieth-century drought indices used in the United States. Bull Am Meteorol Soc. 2002;83(8):1149–65.

    Article  Google Scholar 

  42. Vicente-Serrano SM, Begueria S, Lopez-Moreno JI. A Multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim. 2010;23(7):1696–718.

    Article  Google Scholar 

  43. Begueria S, Vicente-Serrano SM, Reig F, Latorre B. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int J Climatol. 2014;34(10):3001–23.

    Article  Google Scholar 

  44. Gibbs WJ, Maher JV. Rainfall deciles as drought indicators: bureau of meteorology; 1967.

    Google Scholar 

  45. Smakhtin VU, Hughes DA. Automated estimation and analyses of meteorological drought characteristics from monthly rainfall data. Environ Model Softw. 2007;22(6):880–90.

    Article  Google Scholar 

  46. Morid S, Smakhtin V, Moghaddasi M. Comparison of seven meteorological indices for drought monitoring in Iran. Int J Climatol. 2006;26(7):971–85.

    Article  Google Scholar 

  47. Wilhite DA, Hayes MJ, Knutson C, Smith KH. Planning for drought: moving from crisis to risk management. JAWRA J Am Water Resour Assoc. 2000;36(4):697–710.

    Google Scholar 

  48. Wilhite DA, Sivakumar MVK, Pulwarty R. Managing drought risk in a changing climate: the role of national drought policy. Weather Clim Extremes. 2014;3:4–13.

    Article  Google Scholar 

  49. World Meteorological Organization (WMO) and Global Water Partnership (GWP): National drought management policy guidelines: a template for action (D.A. Wilhite). Integrated drought management programme (IDMP) tools and guidelines series 1 WMO, Geneva, Switzerland and GWP, Stockholm, Sweden; 2014.

    Google Scholar 

  50. Wilhite DA. Integrated drought management: moving from managing disasters to managing risk in the Mediterranean region. Euro-Mediterr J Environ Integr. 2019;4(1):42.

    Article  Google Scholar 

  51. WorldBank. Assessing drought hazard and risk: principles and implementation guidance. Washington, DC: World Bank. 2019.

    Google Scholar 

  52. Cockfield C, Dovers S. The science and policy of climate variability and climate change: intersections and possibilities. In: Botterill LC, Cockfield C, editors. Drought, risk management, and policy. 1st ed. Boca Raton: CRC Press; 2013. p. 29–44.

    Google Scholar 

  53. Kim TW, Jehanzaib M. Drought risk analysis, forecasting and assessment under climate change. Water. 2020;12(7):7.

    Article  Google Scholar 

  54. Dikici M. Drought analysis with different indices for the Asi Basin (Turkey). Sci Rep. 2020;10(1):20739.

    Article  CAS  Google Scholar 

  55. Al-Safi HIJ, Sarukkalige PR. Assessment of future climate change impacts on hydrological behavior of Richmond River Catchment. Water Sci Eng. 2017;10(3):197–208.

    Article  Google Scholar 

  56. Dai AG. Drought under global warming: a review. Wiley Interdiscip Rev-Clim Chang. 2011;2(1):45–65.

    Article  Google Scholar 

  57. Nunez JH, Verbist K, Wallis JR, Schaefer MG, Morales L, Cornelis WM. Regional frequency analysis for mapping drought events in north-central Chile. J Hydrol. 2011;405(3–4):352–66.

    Article  Google Scholar 

  58. Jia H, Pan D, Wang J-a, Zhang W-c. Risk mapping of integrated natural disasters in China. Nat Hazards. 2016;80(3):2023–35.

    Google Scholar 

  59. Rajsekhar D, Singh VP, Mishra AK. Integrated drought causality, hazard, and vulnerability assessment for future socioeconomic scenarios: An information theory perspective. J Geophys Res-Atmos. 2015;120(13):6346–78.

    Article  Google Scholar 

  60. Dabanli I. Drought hazard, vulnerability, and risk assessment in Turkey. Arab J Geosci. 2018;11(18):12.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Akdeniz University, Antalya, Turkey, and EXCEED Swindon project funded by DAAD (German Academic Exchange Service).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ethem Karadirek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karadirek, I.E. (2022). Drought Management. In: Bahadir, M., Haarstrick, A. (eds) Water and Wastewater Management. Water and Wastewater Management. Springer, Cham. https://doi.org/10.1007/978-3-030-95288-4_3

Download citation

Publish with us

Policies and ethics