Skip to main content

An Overview of Process and Technologies for Industrial Wastewater and Landfill Leachate Treatment

  • Chapter
  • First Online:
Water and Wastewater Management

Abstract

Industrial development and high urbanization are responsible for several environmental problems, as the effluents generated cause disturbances to the ecosystems and risks to people's health due to the release of pollutants that are not properly treated. Based on the nature of wastewater, quantitative and qualitative aspects, different types of technologies or combinations of them are necessary and should be used before final disposal. Thus, to address the wastewater (industrial and landfill leachate) is fundamental to design a suitable treatment process. The combination of different processes and technologies in a general manner can provide advantages over a single technology or a single process itself. To ensure the safety, efficacy and quality of the treated wastewater, laboratory and pilot scale tests should be deeply explored in order to improve the performance of the process already applied at full scale or for the development of a new treatment system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ranade VV, Bhandari VM. Chapter 1—Industrial wastewater treatment, recycling, and reuse: an overview. In: Ranade VV, Bhandari VM (eds.) Industrial wastewater treatment, recycling and reuse. Oxford: Butterworth-Heinemann; 2014. p. 1–80. https://doi.org/10.1016/B978-0-08-099968-5.00001-5.

  2. Metcalf & Eddy Inc an AC, Asano T, Burton F, Leverenz H. Water reuse: issues, technologies, and applications. New York: McGraw-Hill Education; 2007.

    Google Scholar 

  3. Rathoure AK, Dhatwalia VK. Toxicity and waste management using bioremediation. IGI Global; 2016.

    Google Scholar 

  4. Crini G, Lichtfouse E. Wastewater treatment: an overview. In: Crini G, Lichtfouse E (eds.) Green adsorbents for pollutant removal: fundamentals and design. Cham: Springer International Publishing; 2018. p. 1–21. https://doi.org/10.1007/978-3-319-92111-2_1.

  5. Barbosa SA (2006) Avaliação de biofiltro aerado submerso no pós-tratamento de efluente de tanque séptico. Dissertação (Mestrado em Engenharia de Recursos Hídricos e Ambiental). Universidade Federal do Paraná

    Google Scholar 

  6. Buzzini AP, Nolasco MA, Springer AM, Pires EC (2006) Evaluation of aerobic and anaerobic treatment of Kraft pulp mill effluent for organochlorines removal. Water Practice Technol 1:1–8. https://doi.org/10.2166/wpt.2006.068

  7. Ribeiro EN, de Sousa WC, de Julio M, Irrazabal WU, Nolasco MA (2013) Airports and environment: proposal of wastewater reclamation at Sao Paulo International Airport. Clean-Soil Air Water 41:627–34. https://doi.org/10.1002/clen.201100682

  8. Campos F, Nolasco, MA (2021) Prospecção Científica e Tecnológica Aplicada ao Conceito de Estações de Tratamento de Esgoto Sustentáveis. Cadernos De Prospecção 14(3):964. https://doi.org/10.9771/cp.v14i3.37258

  9. Clarke BO, Anumol T, Barlaz M, Snyder SA. Investigating landfill leachate as a source of trace organic pollutants. Chemosphere. 2015;127:269–75. https://doi.org/10.1016/j.chemosphere.2015.02.030.

    Article  CAS  Google Scholar 

  10. Ilyas H, Masih I. The performance of the intensified constructed wetlands for organic matter and nitrogen removal: a review. J Environ Manage. 2017;198:372–83. https://doi.org/10.1016/j.jenvman.2017.04.098.

    Article  CAS  Google Scholar 

  11. Lu M-C, Chen YY, Chiou M-R, Chen MY, Fan H-J. Occurrence and treatment efficiency of pharmaceuticals in landfill leachates. Waste Manage. 2016;55:257–64. https://doi.org/10.1016/j.wasman.2016.03.029.

    Article  CAS  Google Scholar 

  12. Lebron YAR, Moreira VR, Brasil YL, Silva AFR, Santos LV de S, Lange LC et al. A survey on experiences in leachate treatment: common practices, differences worldwide and future perspectives. J Environ Manage. 2021;288:112475. https://doi.org/10.1016/j.jenvman.2021.112475.

  13. Gouveia N, Prado RR do. Riscos à saúde em áreas próximas a aterros de resíduos sólidos urbanos. Revista de Saúde Pública. 2010;44:859–66. https://doi.org/10.1590/S0034-89102010005000029.

  14. Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P. Landfill leachate treatment: review and opportunity. J Hazard Mater. 2008;150:468–93. https://doi.org/10.1016/j.jhazmat.2007.09.077.

    Article  CAS  Google Scholar 

  15. Eggen T, Moeder M, Arukwe A. Municipal landfill leachates: a significant source for new and emerging pollutants. Sci Total Environ. 2010;408:5147–57. https://doi.org/10.1016/j.scitotenv.2010.07.049.

    Article  CAS  Google Scholar 

  16. Tran NH, Reinhard M, Gin KY-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions—a review. Water Res. 2018;133:182–207. https://doi.org/10.1016/j.watres.2017.12.029.

  17. Nivala J, Hoos MB, Cross C, Wallace S, Parkin G. Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland. Sci Total Environ. 2007;380:19–27. https://doi.org/10.1016/j.scitotenv.2006.12.030.

    Article  CAS  Google Scholar 

  18. Chang W-S, Chen S-S, Chang T-C, Nguyen N-T, Cheng H-H, Hsu H-T. Fouling potential and reclamation feasibility for a closed landfill leachate treated by various pretreatment processes on membrane system. Desalin Water Treat. 2015;55:3568–75. https://doi.org/10.1080/19443994.2014.946730.

    Article  CAS  Google Scholar 

  19. Moreira CA, Braga AC de O. Anomalias de cargabilidade em aterro de resíduos sólidos domiciliares. Revista Brasileira de Geofísica. 2009;27:55–62. https://doi.org/10.1590/S0102-261X2009000100005.

  20. Costa AM, Alfaia RG de SM, Campos JC. Landfill leachate treatment in Brazil—an overview. J Environ Manage. 2019;232:110–6. https://doi.org/10.1016/j.jenvman.2018.11.006.

  21. Wiszniowski J, Robert D, Surmacz-Gorska J, Miksch K, Weber JV. Landfill leachate treatment methods: a review. Environ Chem Lett. 2006;4:51–61. https://doi.org/10.1007/s10311-005-0016-z.

    Article  CAS  Google Scholar 

  22. Welander U, Henrysson T, Welander T. Nitrification of landfill leachate using suspended-carrier biofilm technology. Water Res. 1997;31:2351–5. https://doi.org/10.1016/S0043-1354(97)00080-8.

    Article  CAS  Google Scholar 

  23. Welander U, Henrysson T, Welander T. Biological nitrogen removal from municipal landfill leachate in a pilot scale suspended carrier biofilm process. Water Res. 1998;32:1564–70. https://doi.org/10.1016/S0043-1354(97)00351-5.

    Article  CAS  Google Scholar 

  24. Barr MJ, Robinson HD. Constructed wetlands for landfill leachate treatment. Waste Manage Res. 1999;17:498–504. https://doi.org/10.1034/j.1399-3070.1999.00075.x.

    Article  CAS  Google Scholar 

  25. Loukidou MX, Zouboulis AI. Comparison of two biological treatment processes using attached- growth biomass for sanitary landfill leachate treatment. Environ Pollut. 2001;111:9.

    Article  Google Scholar 

  26. Bulc TG. Long term performance of a constructed wetland for landfill leachate treatment. Ecol Eng. 2006;26:365–74. https://doi.org/10.1016/j.ecoleng.2006.01.003.

    Article  Google Scholar 

  27. Öncü G, Reiser M, Kranert M. Aerobic in situ stabilization of Landfill Konstanz Dorfweiher: Leachate quality after 1 year of operation. Waste Manage. 2012;32:2374–84. https://doi.org/10.1016/j.wasman.2012.07.005.

    Article  CAS  Google Scholar 

  28. Morello L, Raga R, Sgarbossa P, Rosson E, Cossu R. Storage potential and residual emissions from fresh and stabilized waste samples from a landfill simulation experiment. Waste Manage. 2018;75:372–83. https://doi.org/10.1016/j.wasman.2018.01.026.

    Article  CAS  Google Scholar 

  29. Jiménez-Silva VA, Santoyo-Tepole F, Ruiz-Ordaz N, Galíndez-Mayer J. Study of the ibuprofen impact on wastewater treatment mini-plants with bioaugmented sludge. Process Saf Environ Prot. 2019;123:140–9. https://doi.org/10.1016/j.psep.2018.08.006.

    Article  CAS  Google Scholar 

  30. Abbas AA, Jingsong G, Ping LZ, Ya PY, Al-Rekabi WS. Review on landfill leachate treatments. Am J Appl Sci. 2009;6:672–84. https://doi.org/10.3844/ajassp.2009.672.684.

    Article  CAS  Google Scholar 

  31. (UNESCO) United Nations Educational S and CO, Programme (WWAP) World Water Assesment, Water UN, United Nations Educational, Scientific and Cultural Organization (UNESCO). Water in a Changing World (WWDR-3): the 3rd United Nations World Water Development Report. Geneva: UNESCO; 2009.

    Google Scholar 

  32. Carvalho T, Nolasco MA (2006) Créditos de carbono e geração de energia com uso de biodigestores no tratamento de dejetos suínos. Revista Acadêmica, Ciências Agrárias e Ambientais 3:23–32. https://doi.org/10.7213/cienciaanimal.v4i3.9405

  33. Aisse MM, Nolasco MA, Andreoli FDN, Lobato MB, Savelli CS, Jurgensen D, Alem Sobrinho P (2000) Pós-tratamento de efluentes provenientes de reatores anaeróbios tipo UAS. In: Proceedings of the VI Latin-American Workshop and Seminar on Anaerobic Digestion, Recife, Brazil, pp 21–327

    Google Scholar 

  34. Nolasco MA, Baggio RB, Griebeler J (2005) Implicações ambientais e qualidade da água da produção animal intensiva. Revista Acadêmica Ciência Animal 3(2):19–26. https://doi.org/10.7213/cienciaanimal.v3i2.9081

  35. Nolasco MA, Campos ALO, Springer AM, Pires EC (2002) Use of lysis and recycle to control excess sludge production inactivated sludge treatment: bench scale study and effect of chlorinated organic compounds. Water Sci Technol 10:55–61. https://doi.org/10.2166/wst.2002.0289

  36. Ødegaard H, Rusten B, Westrum T. A new moving bed biofilm reactor—applications and results. Water Sci Technol. 1994;29:157–65. https://doi.org/10.2166/wst.1994.0757.

    Article  Google Scholar 

  37. Ødegaard H. The moving bed biofilm reactor. Hokkaido Press; 1999.

    Google Scholar 

  38. Rusten B, Eikebrokk B, Ulgenes Y, Lygren E. Design and operations of the Kaldnes moving bed biofilm reactors. Aquacult Eng. 2006;34:322–31. https://doi.org/10.1016/j.aquaeng.2005.04.002.

    Article  Google Scholar 

  39. Ciesielski S. Characterization of bacterial structures in two-stage moving-bed biofilm reactor (MBBR) during nitrification of the landfill leachate. J Microbiol Biotechnol. 2010;20:1140–51. https://doi.org/10.4014/jmb.1001.01015.

    Article  CAS  Google Scholar 

  40. Oliveira ACDG, Blaich CI, Santana DDLSV, Prates K. NMP de bactérias nitrificantes e desnitrificantes e sua relação com os parâmetros físico-químicos em lodo ativado para remoção biológica de nitrogênio de lixiviado de aterro sanitário. Revista DAE. 2013;61:60–9. https://doi.org/10.4322/dae.2014.107.

  41. Oliveira DVMD. Caracterização dos parâmetros de controle e avaliação de desempenho de um reator biológico com leito móvel (MBBR). Dissertação (Mestrado). Universidade Federal do Rio de Janeiro; 2008.

    Google Scholar 

  42. Rodgers M, Zhan X-M. Moving-medium biofilm reactors. Re/Views Environ Sci Bio/Technol. 2003;2:213–24. https://doi.org/10.1023/B:RESB.0000040467.78748.1e.

    Article  CAS  Google Scholar 

  43. Aygun A, Nas B, Berktay A. Influence of high organic loading rates on COD removal and sludge production in moving bed biofilm reactor. Environ Eng Sci. 2008;25:1311–6. https://doi.org/10.1089/ees.2007.0071.

    Article  CAS  Google Scholar 

  44. Chen S, Sun D, Chung J-S. Simultaneous removal of COD and ammonium from landfill leachate using an anaerobic–aerobic moving-bed biofilm reactor system. Waste Manage. 2008;28:339–46. https://doi.org/10.1016/j.wasman.2007.01.004.

    Article  CAS  Google Scholar 

  45. Wang R-C, Wen X-H, Qian Y. Influence of carrier concentration on the performance and microbial characteristics of a suspended carrier biofilm reactor. Process Biochem. 2005;40:2992–3001. https://doi.org/10.1016/j.procbio.2005.02.024.

    Article  CAS  Google Scholar 

  46. Jahren SJ, Rintala JA, Ødegaard H. Aerobic moving bed biofilm reactor treating thermomechanical pulping whitewater under thermophilic conditions. Water Res. 2002;36:1067–75. https://doi.org/10.1016/S0043-1354(01)00311-6.

    Article  CAS  Google Scholar 

  47. Gaul T, Märker S, Kunst S. Start-up of moving bed biofilm reactors for deammonification: the role of hydraulic retention time, alkalinity and oxygen supply. Water Sci Technol. 2005;52:127–33. https://doi.org/10.2166/wst.2005.0191.

    Article  CAS  Google Scholar 

  48. Luostarinen S, Luste S, Valentín L, Rintala J. Nitrogen removal from on-site treated anaerobic effluents using intermittently aerated moving bed biofilm reactors at low temperatures. Water Res. 2006;40:1607–15. https://doi.org/10.1016/j.watres.2006.02.022.

    Article  CAS  Google Scholar 

  49. Nocko LM. Remoção de carbono e nitrogênio em reator de leito móvel submetido à aeração intermitente. Dissertação (Mestrado). Universidade de São Paulo; 2008. https://doi.org/10.11606/D.18.2008.tde-11022009-173925.

  50. de Oliveira DVM, Volschan I, Piveli RP. Avaliação comparativa entre custos dos processos MBBR/IFAS e lodo ativado para o tratamento de esgoto sanitário. Revista DAE. 2013;61:46–55. https://doi.org/10.4322/dae.2014.110.

    Article  Google Scholar 

  51. Minegatti de Oliveira DV, Volschan Junior I, Pacheco Jordão E. Comportamento e desempenho do processo reator biológico com leito móvel (MBBR) para a remoção da matéria orgânica e compostos nitrogenados. Revista AIDIS de Ingeniería y Ciencias Ambientales Investigación, Desarrollo y Práctica. 2011;4:12–26. https://doi.org/10.22201/iingen.0718378xe.2011.4.1.26008.

  52. Vanzetto SC. Estudos de viabilidade de tratamento de efluente de indústria de celulose kraft por reator biológico com leito móvel (MBBR). Dissertação (Mestrado). Universidade Tecnológica Federal do Paraná; 2012.

    Google Scholar 

  53. Oliveira DVM de, Filho AC de O, Rabelo MD, Nariyosh YN. Avaliação de uma Planta Piloto de MBBR ( Moving Bed Biofilm Reactor—Reator Biológico com Leito Móvel) para Tratamento de Efluente de uma Fábrica de Celulose e Papel. O Papel. 2012;73:75–80.

    Google Scholar 

  54. ITRC. Technical and regulatory guidance document for constructed treatment wetlands; 2003.

    Google Scholar 

  55. Valentim MAA. Desempenho de leitos cultivados (“constructed wetland”) para tratamento de esgoto: contribuições para concepção e operação. Tese (doutorado). Universidade Estadual de Campinas; 2003.

    Google Scholar 

  56. Clarke E, Baldwin AH. Responses of wetland plants to ammonia and water level. Ecol Eng. 2002;18:257–64. https://doi.org/10.1016/S0925-8574(01)00080-5.

    Article  Google Scholar 

  57. Akinbile CO, Yusoff MS, Ahmad Zuki AZ. Landfill leachate treatment using sub-surface flow constructed wetland by Cyperus haspan. Waste Manage. 2012;32:1387–93. https://doi.org/10.1016/j.wasman.2012.03.002.

    Article  CAS  Google Scholar 

  58. Cano V, Vich DV, Rousseau DPL, Lens PNL, Nolasco MA. Influence of recirculation over COD and N-NH 4 removals from landfill leachate by horizontal flow constructed treatment wetland. Int J Phytorem. 2019;21:998–1004. https://doi.org/10.1080/15226514.2019.1594681.

    Article  CAS  Google Scholar 

  59. Cano V, Vich DV, Andrade HHB, Salinas DTP, Nolasco MA. Nitrification in multistage horizontal flow treatment wetlands for landfill leachate treatment. Sci Total Environ. 2020;704:135376. https://doi.org/10.1016/j.scitotenv.2019.135376

  60. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol. 2006;57:233–66. https://doi.org/10.1146/annurev.arplant.57.032905.105159.

    Article  CAS  Google Scholar 

  61. Bais HP, Park S-W, Weir TL, Callaway RM, Vivanco JM. How plants communicate using the underground information superhighway. Trends Plant Sci. 2004;9:26–32. https://doi.org/10.1016/j.tplants.2003.11.008.

    Article  CAS  Google Scholar 

  62. Wu FY, Chung AKC, Tam NFY, Wong MH. Root exudates of wetland plants influenced by nutrient status and types of plant cultivation. Int J Phytorem. 2012;14:543–53. https://doi.org/10.1080/15226514.2011.604691.

    Article  Google Scholar 

  63. Zhu H, Yan B, Xu Y, Guan J, Liu S. Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios. Ecol Eng. 2014;63:58–63. https://doi.org/10.1016/j.ecoleng.2013.12.018.

    Article  Google Scholar 

  64. Koottatep T, Polprasert C. Role of plant uptake on nitrogen removal in constructed wetlands located in the tropics. Water Sci Technol. 1997;36:1–8. https://doi.org/10.1016/S0273-1223(97)00725-7.

    Article  CAS  Google Scholar 

  65. Kozub DD, Liehr SK. Assessing denitrification rate limiting factors in a constructed wetland receiving landfill leachate. Water Sci Technol. 1999;40:75–82. https://doi.org/10.1016/S0273-1223(99)00459-X.

    Article  CAS  Google Scholar 

  66. Mendonça AAJ (2016) Avaliação de um sistema descentralizado de tratamento de esgotos domésticos em escala real composto por tanque séptico e wetlands construída híbrida. Dissertação (Mestrado), Universidade de São Paulo

    Google Scholar 

  67. Mello VFB, Abreu JP da G, Ferreira JM, Jucá JFT, Motta Sobrinho MA da. Variáveis no processo de coagulação /floculação/decantação de lixiviados de aterros sanitários urbanos. Revista Ambiente & Água. 2012;7:88–100. https://doi.org/10.4136/ambi-agua.861.

  68. Queiroz LM, Amaral MS, Morita DM, Yabroudi SC, Sobrinho PA. Aplicação de processos físico-químicos como alternativa de pré e pós-tratamento de lixiviados de aterros sanitários. Engenharia Sanitaria e Ambiental. 2011;16:403–10. https://doi.org/10.1590/S1413-41522011000400012.

    Article  Google Scholar 

  69. Cecchet J, Gomes BM, Costanzi RN, Gomes SD. Tratamento de efluente de refinaria de óleo de soja por sistema de flotação por ar dissolvido. Revista Brasileira de Engenharia Agrícola e Ambiental. 2010;14:81–6. https://doi.org/10.1590/S1415-43662010000100011.

    Article  Google Scholar 

  70. Nunes JA. Tratamento físicoquímico de águas residuárias industriais. Chiado Books; 2019.

    Google Scholar 

  71. Matilainen A, Vepsäläinen M, Sillanpää M. Natural organic matter removal by coagulation during drinking water treatment: a review. Adv Coll Interface Sci. 2010;159:189–97. https://doi.org/10.1016/j.cis.2010.06.007.

    Article  CAS  Google Scholar 

  72. Felici EM, Kuroda EK, Yamashita F, da Silva SMCP. Remoção de carga orgânica recalcitrante de lixiviado de resíduos sólidos urbanos pré-tratado biologicamente por coagulação química-floculação-sedimentação. Engenharia Sanitária e Ambiental. 2013;18:177–84. https://doi.org/10.1590/S1413-41522013000200010.

    Article  CAS  Google Scholar 

  73. Yabroudi Bayram SC. Remoção de matéria orgânica e nitrogênio de lixiviados de aterro sanitário: tratamento por nitritação/desnitritação biológica e processos físico-químicos. Doutorado em Engenharia Hidráulica. Universidade de São Paulo; 2012. https://doi.org/10.11606/T.3.2012.tde-29072013-161002.

  74. Souto GD de B. Lixiviado de aterros sanitários brasileiros: estudo de remoção do nitrogênio amoniacal por processo de arraste com ar (stripping). Tese (doutorado). Universidade de São Paulo; 2009. https://doi.org/10.11606/T.18.2009.tde-19022009-121756.

  75. Abdanur A (2005) Remediação de solo e água subterrânea contaminados por hidrocarbonetos de petróleo: estudo de caso da refinaria Duque de Caxias/RJ. Dissertação (Mestrado) Universidade Federal do Paraná

    Google Scholar 

  76. Youm KH, Fane AG, Wiley DE. Effects of natural convection instability on membrane performance in dead-end and cross-flow ultrafiltration. J Membr Sci. 1996;116:229–41. https://doi.org/10.1016/0376-7388(96)00047-6.

    Article  CAS  Google Scholar 

  77. Federation WE. Membrane systems for wastewater treatment. 1st ed. New York: McGraw-Hill Education; 2005.

    Google Scholar 

  78. Pi KW, Li Z, Wan DJ, Gao LX. Pretreatment of municipal landfill leachate by a combined process. Process Saf Environ Prot. 2009;87:191–6. https://doi.org/10.1016/j.psep.2009.01.002.

    Article  CAS  Google Scholar 

  79. Marañón E, Castrillón L, Fernández-Nava Y, Fernández-Méndez A, Fernández-Sánchez A. Coagulation-flocculation as a pretreatment process at a landfill leachate nitrification-denitrification plant. J Hazard Mater. 2008;156:538–44. https://doi.org/10.1016/j.jhazmat.2007.12.084.

    Article  CAS  Google Scholar 

  80. Cortez S, Teixeira P, Oliveira R, Mota M. Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments. J Environ Manage. 2011;92:749–55. https://doi.org/10.1016/j.jenvman.2010.10.035.

    Article  CAS  Google Scholar 

  81. Pant D, Van Bogaert G, Diels L, Vanbroekhoven K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Biores Technol. 2010;101:1533–43. https://doi.org/10.1016/j.biortech.2009.10.017.

    Article  CAS  Google Scholar 

  82. Sun H, Xu S, Zhuang G, Zhuang X. Performance and recent improvement in microbial fuel cells for simultaneous carbon and nitrogen removal: a review. J Environ Sci. 2016;39:242–8. https://doi.org/10.1016/j.jes.2015.12.006.

    Article  CAS  Google Scholar 

  83. Tee P-F, Abdullah MO, Tan IAW, Mohamed Amin MA, Nolasco-Hipolito C, Bujang K. Performance evaluation of a hybrid system for efficient palm oil mill effluent treatment via an air-cathode, tubular upflow microbial fuel cell coupled with a granular activated carbon adsorption. Biores Technol. 2016;216:478–85. https://doi.org/10.1016/j.biortech.2016.05.112.

    Article  CAS  Google Scholar 

  84. Cano V, Cano J, Nunes SC, Nolasco MA. Electricity generation influenced by nitrogen transformations in a microbial fuel cell: assessment of temperature and external resistance. Renew Sustain Energy Rev. 2021;139:110590. https://doi.org/10.1016/j.rser.2020.110590

  85. Al-Mamun A, Baawain MS. Accumulation of intermediate denitrifying compounds inhibiting biological denitrification on cathode in microbial fuel cell. J Environ Health Sci Eng. 2015;13:81. https://doi.org/10.1186/s40201-015-0236-5.

    Article  CAS  Google Scholar 

  86. Logan BE. Microbial fuel cells. Hoboken, N.J: Wiley-Interscience; 2008.

    Google Scholar 

  87. Zhang F, He Z. Integrated organic and nitrogen removal with electricity generation in a tubular dual-cathode microbial fuel cell. Process Biochem. 2012;47:2146–51. https://doi.org/10.1016/j.procbio.2012.08.002.

    Article  CAS  Google Scholar 

  88. Sakdaronnarong CK, Thanosawan S, Chaithong S, Sinbuathong N, Jeraputra C. Electricity production from ethanol stillage in two-compartment MFC. Fuel. 2013;107:382–6. https://doi.org/10.1016/j.fuel.2012.10.030.

    Article  CAS  Google Scholar 

  89. Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 2005;23:291–8. https://doi.org/10.1016/j.tibtech.2005.04.008.

    Article  CAS  Google Scholar 

  90. Logan BE, Rossi R, Ragab A, Saikaly PE. Electroactive microorganisms in bioelectrochemical systems. Nat Rev Microbiol. 2019;17:307–19. https://doi.org/10.1038/s41579-019-0173-x.

    Article  CAS  Google Scholar 

  91. Philips J, Verbeeck K, Rabaey K, Arends J. Electron transfer mechanisms in biofilms. Microbial electrochemical and fuel cells: fundamentals and applications. Elsevier. Woodhead Publishing; 2015. pp. 67–113. https://doi.org/10.1016/B978-1-78242-375-1.00003-4.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo A. Nolasco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nolasco, M.A., da Silva, G.R.L., Cano, V. (2022). An Overview of Process and Technologies for Industrial Wastewater and Landfill Leachate Treatment. In: Bahadir, M., Haarstrick, A. (eds) Water and Wastewater Management. Water and Wastewater Management. Springer, Cham. https://doi.org/10.1007/978-3-030-95288-4_11

Download citation

Publish with us

Policies and ethics