Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 716 Accesses

Abstract

This chapter summarises this book. Resistor-based temperature sensors are especially competitive in applications that require both high resolution and high energy-efficiency. Compared to the state-of-the-art in 2016, the work presented in this book improves the energy-efficiency of CMOS temperature sensors is by 65×. This chapter also contains some suggestions for future directions, including a systematic design approach based on sensor accuracy, area- and power- efficient digital backend, background calibration, long-term-stability measurement, application of the tail-resistor-linearized OTA, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. K.A.A. Makinwa, Smart temperature sensor survey, [Online]. Available: http://ei.ewi.tudelft.nl/docs/TSensor_survey.xls

  2. C.H. Weng, C.K. Wu, T.H. Lin, A CMOS thermistor-embedded continuous-time delta-sigma temperature sensor with a resolution FoM of 0.65 pJ °C2. IEEE J. Solid State Circuits 50(11), 2491–2500 (2015)

    Article  Google Scholar 

  3. M.H. Roshan et al., A MEMS-assisted temperature sensor with 20-μK resolution, conversion rate of 200 S/s, and FOM of 0.04 pJK2. IEEE J. Solid State Circuits 52(1), 185–197 (2017)

    Article  Google Scholar 

  4. M. Cochet et al., A 225μm2 probe single-point calibration digital temperature sensor using body-bias adjustment in 28 nm FD-SOI CMOS. IEEE Solid-State Circuits L. 1(1), 14–17 (2018)

    Article  Google Scholar 

  5. C. van Vroonhoven, D. D'Aquino, K. Makinwa, A ±0.4°C (3σ) −70 to 200°C time-domain temperature sensor based on heat diffusion in Si and SiO2, in IEEE ISSCC Dig. Tech. Papers, (2012), pp. 204–206

    Google Scholar 

  6. C.P.L. van Vroonhoven, D. d'Aquino, K.A.A. Makinwa, A thermal-diffusivity-based temperature sensor with an untrimmed inaccuracy of ±0.2°C (3σ) from −55°C to 125°C, in IEEE ISSCC Dig. Tech. Papers, (2010, Feb), pp. 314–315

    Google Scholar 

  7. B. Yousefzadeh, S.H. Shalmany, K.A.A. Makinwa, A BJT-based temperature-to-digital converter with ±60mK inaccuracy from −70°C to +125°C in 160nm CMOS. IEEE J. Solid State Circuits 52(4), 1044–1052 (2017)

    Article  Google Scholar 

  8. W. Zhao, R. Pan, Y. Ha, Z. Yang, A 0.4V 280-nW frequency reference-less nearly all-digital hybrid domain temperature sensor, in IEEE Proc. ASSCC, (2014, Nov), pp. 301–304

    Google Scholar 

  9. K. Pelzers, H. Xin, E. Cantatore, P. Harpe, A 2.18-pJ/conversion, 1656-μm2 temperature sensor with a 0.61-pJ⋅K2 FoM and 52-pW stand-by power. IEEE Solid-State Circuits L 3, 82–85 (2020)

    Article  Google Scholar 

  10. P. Chen, Y. Hu, J. Liou, B. Ren, A 486k S/s CMOS time-domain smart temperature sensor with −0.85°C/0.78°C voltage-calibrated error, in Proc. ISCAS, (2015, May), pp. 2109–2112

    Google Scholar 

  11. M.H. Perrott et al., A temperature-to-digital converter for a MEMS-based programmable oscillator with <±0.5-ppm frequency stability and <1-ps integrated jitter. IEEE J. Solid-State Circuits 48(1), 276–291 (2013)

    Article  Google Scholar 

  12. M.A. Pertijs, J.H. Huijsing, Charateristics of bipolar transistors, in Precision Temperature Sensors in CMOS Technology, (Springer, 2006)

    Google Scholar 

  13. M.S. Raman, T. Kifle, E. Bhattacharya, K.N. Bhat, Physical model for the resistivity and temperature coefficient of resistivity in heavily doped polysilicon. IEEE Trans. Electron Dev 53(8), 1885–1892 (2006)

    Article  Google Scholar 

  14. Y. Lee et al., A 5800-μm2 resistor-based temperature sensor with a one-point trimmed inaccuracy of ±1.2°C (3σ) from −50°C to 105°C in 65-nm CMOS. Solid-State Circuits L. 2(9), 67–70 (2019)

    Article  Google Scholar 

  15. A. Khashaba et al., A 0.0088mm2 resistor-based temperature sensor achieving 92fJ⋅K2 FoM in 65nm CMOS, in IEEE Dig. Tech. Papers, (2020, Feb), pp. 60–61

    Google Scholar 

  16. W. Choi et al., A compact resistor-based CMOS temperature sensor with an inaccuracy of 0.12 °C (3σ) and a resolution FoM of 0.43 pJ∙K2 in 65-nm CMOS. IEEE J. Solid State Circuits 53(12), 3356–3367 (2018)

    Google Scholar 

  17. S. Jeong, Z. Foo, Y. Lee, J. Sim, D. Blaauw, D. Sylvester, A fully-integrated 71 nW CMOS temperature sensor for low power wireless sensor nodes. IEEE J. Solid State Circuits 49(8), 1682–1693 (2014)

    Article  Google Scholar 

  18. X. Tang, K. Pun, W. Ng, A 0.9V 5kS/s resistor-based time-domain temperature sensor in 90nm CMOS with calibrated inaccuracy of −0.6°C/0.8°C from −40°C to 125°C, in Proc. ASSCC, (2013, Nov), pp. 169–172

    Google Scholar 

  19. Horng et al., A 0.7V resistive sensor with temperature/voltage detection function in 16nm FinFET technologies, in IEEE Symp. VLSI Circ, (2014, June), pp. 1–2

    Google Scholar 

  20. A. Mordakhay, J. Shor, Miniaturized, 0.01 mm2, resistor-based thermal sensor with an energy consumption of 0.9 nJ and a conversion time of 80 μs for processor applications. IEEE J. Solid State Circuits 53(10), 2958–2969 (2018)

    Article  Google Scholar 

  21. H. Jiang, C.-C. Huang, M.R. Chan, D.A. Hall, A 2-in-1 temperature and humidity sensor with a single FLL Wheatstone-bridge front-end. IEEE J. Solid State Circuits 55(8), 2174–2185 (2020)

    Article  Google Scholar 

  22. J.A. Angevare, K.A.A. Makinwa, A 6800-μm2 resistor-based temperature sensor with ±0.35 °C (3σ) inaccuracy in 180-nm CMOS. IEEE J. Solid State Circuits 54(10), 2649–2657 (2019)

    Article  Google Scholar 

  23. A. Wang, C. Chen, C. Liu, C.R. Shi, A 9-Bit resistor-based highly digital temperature sensor with a SAR-quantization embedded differential low-pass filter in 65-nm CMOS with a 2.5-μs conversion time. IEEE Sensors J. 19(17), 7215–7225 (2019)

    Article  Google Scholar 

  24. H. Xin, M. Andraud, P. Baltus, E. Cantatore, P. Harpe, A 0.34-571nW all-dynamic versatile sensor interface for temperature, capacitance, and resistance sensing, in Proc. ESSCIRC, (2019, Sept), pp. 161–164

    Google Scholar 

  25. H. Xin, M. Andraud, P. Baltus, E. Cantatore, P. Harpe, A 174 pW–488.3 nW 1 S/s–100 kS/s all-dynamic resistive temperature sensor with speed/resolution/resistance adaptability. IEEE Solid-State Circuits L. 1(3), 70–73 (2018)

    Article  Google Scholar 

  26. C. Wu, W. Chan, T. Lin, A 80kS/s 36μW resistor-based temperature sensor using BGR-free SAR ADC with a unevenly-weighted resistor string in 0.18μm CMOS, in IEEE Symp. VLSI Circ, (2011), pp. 222–223

    Google Scholar 

  27. H. Park, J. Kim, A 0.8-V resistor-based temperature sensor in 65-nm CMOS with supply sensitivity of 0.28 °C/V. IEEE J. Solid State Circuits 53(3), 906–912 (2018)

    Article  Google Scholar 

  28. Z. Tang, Y. Fang, X.-P. Yu, Z. Shi, L. Lin, N.N. Tan, A dynamic-biased resistor-based CMOS temperature sensor with a duty-cycle-modulated output. IEEE Trans. Circuits Syst. II 67(9), 1504–1508 (2020)

    Article  Google Scholar 

  29. J.A. Angevare, Y. Chae, K.A.A. Makinwa, A highly digital 2210μm2 resistor-based temperature sensor with a 1-point trimmed inaccuracy of ± 1.3 ° C (3 σ) from −55 ° C to 125 ° C in 65nm CMOS, in IEEE ISSCC Dig. Tech. Papers, (2021), pp. 76–78

    Google Scholar 

  30. G. Wang, A. Heidari, K.A.A. Makinwa, G.C.M. Meijer, An accurate BJT-based CMOS temperature sensor with duty-cycle-modulated output. IEEE Trans. Indus. Electron 64(2), 1572–1580 (2017)

    Article  Google Scholar 

  31. K. Souri, Y. Chae, K.A.A. Makinwa, A CMOS temperature sensor with a voltage-calibrated inaccuracy of ±0.15°C (3σ) from −55°C to 125°C. IEEE J. Solid State Circuits 48(1), 292–301 (2013)

    Article  Google Scholar 

  32. S. Oh et al., A 2.5nJ duty-cycled bridge-to-digital converter integrated in a 13mm3 pressure-sensing system, in IEEE ISSCC Dig. Tech. Papers, (2018, Feb), pp. 328–330

    Google Scholar 

  33. Y. Shu, L. Kuo, T. Lo, An oversampling SAR ADC with DAC mismatch error shaping achieving 105 dB SFDR and 101 dB SNDR over 1 kHz BW in 55 nm CMOS. IEEE J. Solid State Circuits 51(12), 2928–2940 (2016)

    Article  Google Scholar 

  34. B. Gönen et al., A continuous-time zoom ADC for low-power audio applications. IEEE J. Solid State Circuits 55(4), 1023–1031 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pan, S., Makinwa, K.A.A. (2022). Conclusions and Outlook. In: Resistor-based Temperature Sensors in CMOS Technology. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-95284-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95284-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95283-9

  • Online ISBN: 978-3-030-95284-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics