Skip to main content

Performance Profiling of Operating Modes via Multi-view Analysis Using Non-negative Matrix Factorisation

  • Chapter
  • First Online:
Recent Advancements in Multi-View Data Analytics

Part of the book series: Studies in Big Data ((SBD,volume 106))

  • 360 Accesses

Abstract

In industrial settings, continuous monitoring of the operation of assets generates a vast amount of data originating from a multitude of very diverse sources. This data allows to study and understand asset performance in real operating conditions, paving the way for failure prediction, machine setting optimisation and many other industrial applications. However, it is not always feasible and neither wise to approach data analytics for such applications by merging all the available data into a single data set, which often leads to information loss. The literature lacks methods to inspect asset performance based on splitting the data in different views corresponding to different types of monitored parameters. The multi-view data analysis method proposed in this work allows to extract operating modes for an industrial asset and subsequently, profile their performance. In this two-step approach, the endogeneous (internal working) data view is first exploited to detect and characterise distinct operating modes, while an exogeneous (operating context) data representation (disjoint with the endogeneous view) of these operating modes is subsequently used to derive prototypical performance profiles via non-negative matrix factorisation. The application potential and validity of the proposed method is illustrated based on real-world data from a wind turbine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Engie is a multinational French energy company. Url: www.engie.com.

  2. 2.

    The SCADA data set can be found here: www.opendata-renewables.engie.com/explore.

  3. 3.

    More info on Python can be found here: https://www.python.org/.

References

  1. Mackey, R., Iverson, D., Pisanich, G., Toberman, M., Hicks, K.: Integrated system health management (ISHM) technology demonstration project final report. In: IEEE Sensors Applications Symposium (2006)

    Google Scholar 

  2. Dhont, M., Tsiporkova, E., Boeva, V.: Layered integration approach for multi-view analysis of temporal data. In: International Workshop on Advanced Analytics and Learning on Temporal Data, pp. 138–154. Springer (2020)

    Google Scholar 

  3. Févotte, C., Idier, J.: Algorithms for nonnegative matrix factorization with the \(\beta \)-divergence. Neural Comput. 23(9), 2421–2456 (2011)

    Article  MathSciNet  Google Scholar 

  4. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  5. Xu, L., Dong, J., Chen, Z., Dai, X.: Non-negative matrix factorization for diabetes ii metabolic profiling analysis. In: 2007 1st International Conference on Bioinformatics and Biomedical Engineering, pp. 641–643. IEEE (2007)

    Google Scholar 

  6. Qin, M., Lei, K., Bai, B., Zhang, G.: Towards a profiling view for unsupervised traffic classification by exploring the statistic features and link patterns. In: Proceedings of the 2019 Workshop on Network Meets AI & ML, pp. 50–56 (2019)

    Google Scholar 

  7. Mandache, D., á la Guillaume, E.B., Olivo-Marin, J.-C., Meas-Yedid, V.: Blind source separation in dynamic cell imaging using non-negative matrix factorization applied to breast cancer biopsies. In: IEEE 18th International Symposium on Biomedical Imaging (ISBI), vol. 2021, pp. 1605–1608. IEEE (2021)

    Google Scholar 

  8. Liu, L., Zhang, Z., Huang, Z.: Flexible discrete multi-view hashing with collective latent feature learning. Neural Process. Lett. 52(3), 1765–1791 (2020)

    Article  Google Scholar 

  9. Fu, L., Lin, P., Vasilakos, A.V., Wang, S.: An overview of recent multi-view clustering. Neurocomputing 402, 148–161 (2020)

    Article  Google Scholar 

  10. Yang, Y., Wang, H.: Multi-view clustering: a survey. Big Data Min. Anal. 1(2), 83–107 (2018)

    Article  Google Scholar 

  11. Liu, X., et al.: Late fusion incomplete multi-view clustering. IEEE Trans. Pattern Anal. Mach. Intell. 41(10), 2410–2423 (2019)

    Google Scholar 

  12. Shao, W.: Online multi-view clustering with incomplete views. In: IEEE International Conference on Big Data (Big Data), vol. 2016, pp. 1012–1017 (2016)

    Google Scholar 

  13. Ye, Y., et al.: Incomplete multiview clustering via late fusion. Comput. Intell. Neurosci. 1–11 (2018)

    Google Scholar 

  14. Jiang, B., et al.: Evolutionary multi-objective optimization for multi-view clustering. In: 2016 IEEE CEC 2016, pp. 3308–3315 (2016)

    Google Scholar 

  15. Liu, J., Wang, C., Gao, J., Han, J.: Multi-view clustering via joint nonnegative matrix factorization. In: Proceedings of the 2013 SIAM International Conference on Data Mining. SIAM (2013), pp. 252–260

    Google Scholar 

  16. Chaudhuri, K., Kakade, S.M., Livescu, K., Sridharan, K.: Multi-view clustering via canonical correlation analysis. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 129–136 (2009)

    Google Scholar 

  17. Chen, M.-S., Huang, L., Wang, C.-D., Huang, D.: Multi-view clustering in latent embedding space. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34(04), pp. 3513–3520 (2020)

    Google Scholar 

  18. Kumar, A., Rai, P., Daume, H.: Co-regularized multi-view spectral clustering. Adv. Neural Inf. Process. Syst. 24, 1413–1421 (2011)

    Google Scholar 

  19. Wang, X., Guo, X., Lei, Z., Zhang, C., Li, S.Z.: Exclusivity-consistency regularized multi-view subspace clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 923–931 (2017)

    Google Scholar 

  20. Bruno, E., Marchand-Maillet, S.: Multiview clustering: a late fusion approach using latent models. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 736–737 (2009)

    Google Scholar 

  21. Xu, J., Ren, Y., Li, G., Pan, L., Zhu, C., Xu, Z.: Deep embedded multi-view clustering with collaborative training. Inf. Sci. 573, 279–290 (2021)

    Article  MathSciNet  Google Scholar 

  22. Greene, D., Cunningham, P.: A matrix factorization approach for integrating multiple data views. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 423–438. Springer (2009)

    Google Scholar 

  23. Kalayeh, M.M., Idrees, H., Shah, M.: Nmf-knn: image annotation using weighted multi-view non-negative matrix factorization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 184–191 (2014)

    Google Scholar 

  24. Ou, W., Long, F., Tan, Y., Yu, S., Wang, P.: Co-regularized multiview nonnegative matrix factorization with correlation constraint for representation learning. Multimedia Tools Appl. 77(10), 12 955–12 978 (2018)

    Google Scholar 

  25. Wang, J., Tian, F., Yu, H., Liu, C.H., Zhan, K., Wang, X.: Diverse non-negative matrix factorization for multi-view data representation. IEEE Trans. Cybern. 48(9), 2620–2632 (2017)

    Article  Google Scholar 

  26. Gong, Y., Li, Z., Zhang, J., Liu, W., Yin, Y., Zheng, Y.: Missing value imputation for multi-view urban statistical data via spatial correlation learning. IEEE Trans. Knowl. Data Eng. (2021)

    Google Scholar 

  27. Zhang, X., Zong, L., Liu, X., Yu, H.: Constrained NMF-based multi-view clustering on unmapped data. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29(1) (2015)

    Google Scholar 

  28. Iverson, D.L.: Inductive system health monitoring. NASA (2004)

    Google Scholar 

  29. Murgia, A., Tsiporkova, E., Verbeke, M., Tourwé, T.: Context-aware performance benchmarking of a fleet of industrial assets. Archives of Data Science, Series A, vol. 5 (2020)

    Google Scholar 

  30. Dhillon, I.S., Sra, S.: Generalized nonnegative matrix approximations with Bregman divergences. In: NIPS, vol. 18. Citeseer (2005)

    Google Scholar 

  31. Bellman, R., Corporation, R., Collection, K.M.R.: Dynamic Programming, ser. Rand Corporation research study. Princeton University Press (1957). [Online]. https://books.google.be/books?id=wdtoPwAACAAJ

  32. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Statistics and Probability (1967)

    Google Scholar 

  33. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 2, 224–227 (1979)

    Article  Google Scholar 

  34. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20 (1987)

    Google Scholar 

  35. Krzanowski, W.J., Lai, Y.: A criterion for determining the number of groups in a data set using sum-of-squares clustering. Biometrics 23–34 (1988)

    Google Scholar 

  36. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. Theory Methods 3(1), 1–27 (1974)

    Article  MathSciNet  Google Scholar 

  37. Handl, J., Knowles, J., Kell, D.B.: Computational cluster validation in post-genomic data analysis. Bioinformatics 21(15), 3201–3212 (2005)

    Article  Google Scholar 

  38. Sheather, S.J.: Density estimation. Stat. Sci. 588–597 (2004)

    Google Scholar 

  39. Dhont, M., Tsiporkova, E., Boeva, V.: Advanced discretisation and visualisation methods for performance profiling of wind turbines. Energies (2021), submitted

    Google Scholar 

  40. Bhatia, R.: Matrix Analysis, vol. 169. Springer (2013)

    Google Scholar 

  41. O’Grady, K.E.: Measures of explained variance: cautions and limitations. Psychol. Bull. 92(3), 766 (1982)

    Article  Google Scholar 

  42. Gumilar, L., Afandi, A.N., Sias, Q.A., Nugroho, W.S., Sholeh, M., Gunawan, A.: Comparative study: pitch angle variation for making power curve and search maximum power of horizontal axis wind turbine. In: AIP Conference Proceedings, vol. 2228, no. 1, p. 030005. AIP Publishing LLC (2020)

    Google Scholar 

Download references

Funding

This research was subsidised through the projects MISTic and ReWind by the Brussels-Capital Region—Innoviris and received funding from the Flemish Government (AI Research Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiel Dhont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhont, M., Tsiporkova, E., Boeva, V. (2022). Performance Profiling of Operating Modes via Multi-view Analysis Using Non-negative Matrix Factorisation. In: Pedrycz, W., Chen, SM. (eds) Recent Advancements in Multi-View Data Analytics. Studies in Big Data, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-030-95239-6_11

Download citation

Publish with us

Policies and ethics