Skip to main content

Sparse Representation for Sampled-Data \(H^\infty \) Filters

  • Chapter
  • First Online:
Realization and Model Reduction of Dynamical Systems

Abstract

We consider the problem of discretization of analog filters and propose a novel method based on sampled-data \(H^\infty \) control theory with sparse representation. For optimal discretization, we adopt minimization of the \(H^\infty \) norm of the error system between a (delayed) target analog filter and a digital system consisting of an ideal sampler, the zero-order hold, and an FIR (finite impulse response) filter. Also, for digital implementation, we propose a sparse representation of the FIR filter to reduce the number of nonzero coefficients with the \(\ell ^1\) norm regularization. We show that this multi-objective optimization is reducible to a convex optimization problem, which can be solved efficiently by numerical computation. We then extend the design method to multi-rate filters, and show a design example. We also give an application to the feedback filter design of delta-sigma modulators.

Supported in part by the JSPS grant JP20H02172 and 20K21008; Supported in part by the JSPS grant JP19H02161.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A real-rational transfer function is a rational function of s with real coefficients.

References

  1. Anderson, B.D.O.: A system theory criterion for positive real matrices. SIAM J. Control Optim. 5(2), 171–182 (1967)

    Article  MathSciNet  Google Scholar 

  2. Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59, 1207–1223 (2006)

    Article  MathSciNet  Google Scholar 

  3. Chen, T., Francis, B.A.: Optimal Sampled-data Control Systems. Springer (1995)

    Google Scholar 

  4. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  5. Doyle, J., Francis, B.A., Tannenbaum, A.: Feedback Control Theory. Macmillan Publishing (1990)

    Google Scholar 

  6. Elad, M.: Sparse and Redundant Representations. Springer (2010)

    Google Scholar 

  7. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. Recent Advances in Learning and Control, pp. 95–110. Springer-Verlag Limited (2008)

    Google Scholar 

  8. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 1.21 (2011). http://cvxr.com/cvx

  9. Iwasaki, T., Hara, S.: Generalized KYP lemma: unified frequency domain inequalities with design applications. IEEE Trans. Automat. Contr. 50(1), 41–59 (2005)

    Article  MathSciNet  Google Scholar 

  10. Kootsookos, P.J., Bitmead, R.B., Green, M.: The Nehari shuffle: FIR(\(q\)) filter design with guaranteed error bounds. IEEE Trans. Signal Process. 40(8), 1876–1883 (1992)

    Article  Google Scholar 

  11. Macleod, M.D., Dempster, A.G.: Multiplierless FIR filter design algorithms. Signal Process. Lett. IEEE 12(3), 186–189 (2005)

    Article  Google Scholar 

  12. Nagahara, M.: Min-max design of FIR digital filters by semidefinite programming. Applications of Digital Signal Processing, pp. 193–210. InTech (2011)

    Google Scholar 

  13. Nagahara, M.: Sparsity Methods for Systems and Control. Now Publishers (2020)

    Google Scholar 

  14. Nagahara, M., Quevedo, D.E., Nešić, D.: Maximum hands-off control: A paradigm of control effort minimization. IEEE Trans. Automat. Contr. 61(3), 735–747 (2016)

    Article  MathSciNet  Google Scholar 

  15. Nagahara, M., Yamamoto, Y.: Frequency domain min-max optimization of noise-shaping delta-sigma modulators. IEEE Trans. Signal Process. 60(6), 2828–2839 (2012)

    Article  MathSciNet  Google Scholar 

  16. Nagahara, M., Yamamoto, Y.: Optimal discretization of analog filters via sampled-data \(H^\infty \) control theory. In: Proceedings of the 2013 IEEE Multi-Conference on Systems and Control (MSC 2013), pp. 527–532 (2013)

    Google Scholar 

  17. Nagahara, M., Yamamoto, Y.: FIR digital filter design by sampled-data \(H^\infty \) discretization. In: Proceedings of the 19th IFAC World Congress, pp. 3110–3115 (2014)

    Google Scholar 

  18. Nagahara, M., Yamamoto, Y.: Sparse representation of feedback filters in delta-sigma modulator. In: Proceedings of the 21st IFAC World Congress (2020). (to appear)

    Google Scholar 

  19. Nagahara, M., Ogura, M., Yamamoto, Y.: \(H^\infty \) design of periodically nonuniform interpolation and decimation for non-band-limited signals. SICE J. Control Meas. Syst. Integr. 4(5), 341–348 (2011)

    Article  Google Scholar 

  20. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)

    Article  MathSciNet  Google Scholar 

  21. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing, 3rd edn. Prentice Hall (2009)

    Google Scholar 

  22. Rantzer, A.: On the Kalman-Yakubovich-Popov lemma. Syst. Control Lett. 28(1), 7–10 (1996)

    Article  MathSciNet  Google Scholar 

  23. Samueli, H.: An improved search algorithm for the design of multiplierless FIR filters with powers-of-two coefficients. IEEE Trans. Cir. Syst. 36(7), 1044–1047 (1989)

    Article  Google Scholar 

  24. Schreier, R., Temes, G.C.: Understanding Delta-Sigma Data Converters. Wiley Interscience (2005)

    Google Scholar 

  25. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11(12), 625–653 (1999). http://sedumi.ie.lehigh.edu/

  26. Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3—a Matlab software package for semidefinite programming, version 1.3. Optim. Methods Softw. 11(1), 545–581 (1999)

    Google Scholar 

  27. Tuqan, J., Vaidyanathan, P.P.: The role of the discrete-time Kalman-Yakubovitch-Popov lemma in designing statistically optimum FIR orthonormal filter banks. In: Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, 1998. ISCAS ’98, vol. 5, pp. 122–125 (1998)

    Google Scholar 

  28. Vaidyanathan, P.P.: Multirate Systems and Filter Banks. Prentice Hall (1993)

    Google Scholar 

  29. Vidyasagar, M.: An Introduction to Compressed Sensing. SIAM (2020)

    Google Scholar 

  30. Yamamoto, Y., Anderson, B.D.O., Nagahara, M., Koyanagi, Y.: Optimizing FIR approximation for discrete-time IIR filters. IEEE Signal Process. Lett. 10(9), 273–276 (2003)

    Article  Google Scholar 

  31. Yamamoto, Y., Madievski, A.G., Anderson, B.D.O.: Approximation of frequency response for sampled-data control systems. Automatica 35(4), 729–734 (1999)

    Article  MathSciNet  Google Scholar 

  32. Yamamoto, Y., Nagahara, M., Khargonekar, P.P.: Signal reconstruction via \(H^\infty \) sampled-data control theory—Beyond the shannon paradigm. IEEE Trans. Signal Process. 60(2), 613–625 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Nagahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagahara, M., Yamamoto, Y. (2022). Sparse Representation for Sampled-Data \(H^\infty \) Filters. In: Beattie, C., Benner, P., Embree, M., Gugercin, S., Lefteriu, S. (eds) Realization and Model Reduction of Dynamical Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-95157-3_23

Download citation

Publish with us

Policies and ethics