Skip to main content

Analysis of the Efficiency of the Rotary Method for Producing a Mixture of Granular Raw Materials in the Preparation of a Cyber-Physical Platform

  • Chapter
  • First Online:
Cyber-Physical Systems: Modelling and Industrial Application

Abstract

The actual problem of creating rational methods for processing industrial waste includes the problem of mixing granular raw materials and can be successfully solved within the framework of a cyber-physical system. In this work, an analysis of the efficiency of the rotary method of obtaining a mixture from the indicated components is carried out using two rows of elastic rectangular blades fixed in one direction tangentially to the outer cylindrical surface of the mixing drum. The assessment of this efficiency was carried out taking into account the degree of overlapping of the intervals of variation of the peak values for the characteristic geometric parameters of the mixing process of the tested working materials. The data obtained using the energy method on the laws of particle distribution in the flows formed to connect the sets of input and output parameters of the technological process at the stage of preparing the cyber-physical platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yan, J., Bäverman, C., Moreno, L., Neretnieks, I.: The long-term acid neutralizing capacity of steel slag. Stud. Environ. Sci. 71, 631–640 (1997). https://doi.org/10.1016/S0166-1116(97)80246-4

    Article  Google Scholar 

  2. Kapranova, A.B., Bakin, M.N., Verloka, I.I.: Simulation of the quality criterion of a mixture in a drum-belt apparatus. Chem. Pet. Eng. 54(5), 287–297 (2018). https://doi.org/10.1007/s10556-018-0477-0

  3. Kapranova, A.B., Verloka, I.I., Yakovlev, P.A., Bahaeva, D.D.: Investigation of the quality of the mixture at the first stage of operation of a gravitational apparatus. Russ. J. Gen. Chem. 90(6), 1178–1179 (2020). https://doi.org/10.1134/S1070363220060341

    Article  Google Scholar 

  4. Kapranova, A.B., Verloka, I.I., Bahaeva, D.D.: About preparation of the analytical platform for creation of a cyber-physical system of industrial mixture of loose components. In: Cyber-Physical Systems: Advances in Design & Modelling. Studies in Systems, Decision, and Control, vol. 259, pp. 81–91 (2020). https://doi.org/10.1007/978-3-030-32579-4_7

  5. Zhang, H. (ed.): Building Materials in Civil Engineering, Series: Woodhead Publishing Series in Civil and Structural Engineering Published, 1st ed., p. 440. Elsevier (9th May 2011)

    Google Scholar 

  6. Shaul, S., Rabinovich, E., Kalman, H.: Generalized flow regime diagram of fluidized beds based on the height to bed diameter ratio. Powder Technol. 228, 264–271 (2012). https://doi.org/10.1016/j.powtec.2012.05.029

    Article  Google Scholar 

  7. Bauman, I., Curic, D., Boban, M.: Mixing of solids in different mixing devices. Sadhana 33(6), 721–731 (2008). https://doi.org/10.1007/s12046-008-0030-5(Springer)

    Article  MATH  Google Scholar 

  8. Makarov, Y.I.: Devices for Mixing Bulk Materials. 216 p. Mechanical Engineering, Moscow (1973)

    Google Scholar 

  9. Kapranova, A.B., Verloka, I.I., Bahaeva, D.D., Tarshis, M.Yu., Cherpitsky, S.N.: To the calculation of the average value of the volume fraction of the key bulk component at the intermediate stage of mixing with an inclined bump. Front. Energy Res. Process Energy Syst. 8, 1–11 (07 August 2020). Article 135. https://doi.org/10.3389/fenrg.2020.00135

  10. Zaselskiy, V., Shved, S., Shepelenk,o M., Suslo, N.: Modeling the horizontal movement of bulk material in the system “conveyor–rotary mixer”. In: E3S Web Conference, vol. 166, p. 06008 (2020). https://doi.org/10.1051/e3sconf/202016606008

  11. Zeren, Z., Neau, H., Fede, P., Simonin, O., Bernard, D., Williams, S.: Numerical study of solid particle axial mixing in a fixed cylindrical drum with rotating paddles: modeling and simulation of reacting multiphase flows at industrial scales. In: 2012 AIChE Annual Meeting, (28 October 2012–02 November 2012) (Pittsburgh, United States). https://www.researchgate.net/publication/282212762_Numerical_study_of_solid_particle_axial_mixing_in_a_fixed_cylindrical_drum_with_rotating_paddles

  12. Kapranova, A., Bahaeva, D., Stenko, D., Vatagin, A., Lebedev, A., Lichak, D.: Distribution of the components of the building mixture in the presence of secondary raw materials during rotary mixing. In: E3s Web of Conference, vol. 220, p. 01060 (16 December 2020). https://doi.org/10.1051/e3sconf/202022001060

  13. Verloka, I., Kapranova, A., Tarshis, M., Cherpitsky, S.: Stochastic modeling of bulk components batch mixing process in gravity apparatus, Int. J. Mech. Eng. Technol. 9(2), 438–444 (2018). Article ID: IJMET_09_02_045. http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=9&IType=2

  14. Zhang, L., Nie, G.Y.: ODS analysis on the rack of batching system mixer. Appl. Mech. Mater. 437, 257–260 (2013). 0.4028/www.scientific.net/AMM.437.257

    Google Scholar 

  15. Kafarov, V.V., Dorokhov, I.N., Arutyunov, S.Y.: System Analysis of Processes of Chemical Engineering, 440 p. Science, Moscow (1985)

    Google Scholar 

  16. Bogomolov, B., Boldyrev, V., Zubarev, A., Meshalkin, V., Men’shikov, V.: Intelligent logical information algorithm for choosing energy- and resource-efficient chemical technologies. Theor. Found. Chem. Eng. 53(5), 709–718 (2019). https://doi.org/10.1134/S0040579519050270

  17. Klimontovich, Y.L.: Turbulent Motion and the Structure of Chaos: A New Approach to the Statistical Theory of Open Systems, 328 p. LENAND, Moscow (2014)

    Google Scholar 

  18. Klimontovich, Y.L.: Turbulent motion and the structure of chaos. Ser. Fund. Theor. Phys. 42, p. 401 (1991). https://doi.org/10.1007/978-94-011-3426-2

  19. Lebedev, A.E., Vatagin, A.A., Borisovsky, M.E., Romanova, M.N., Badaeva, N.V., Sheronina, I.S.: Utility Model Patent: 2624698 Russian Federation, B01F3/18. Unit for mixing and compaction of bulk materials (2017)

    Google Scholar 

  20. Bharucha-Reid, A.T.: Elements of the Theory of Markov Processes and Their Applications. McGraw-Hill, New York (1960)

    MATH  Google Scholar 

  21. Röpke, G.: Statistical Mechanics for Non-Equilibrium. German Publishing House of Sciences, Berlin (1987)

    MATH  Google Scholar 

  22. Geng, T., Sau, L.L., Xiaochuan, Ya. Moo, S.H.: A dimensionless analysis of residence time distributions for continuous powder mixing. Powder Technol. 315, 332–338 (2017). https://doi.org/10.1016/j.powtec.2017.04.007

  23. Johnson, N., Kendal, L.M., Stuar, T.A.: J. R. Stat. Soc. Ser. D (The Statistician) 12(2), 138 (1962)

    Google Scholar 

  24. Ghaderi, A.: Continuous mixing of particulate materials. In: Proceedings of the 4th International Conference for Conveying and Handling of particulate solids, At Budapest, Hungary, vol. 2 (January 2003). https://doi.org/10.13140/2.1.3487.6801

  25. Leonchik, B.I., Mayakin, V.P.: Measurements in Dispersed Flows. Energy, Moscow, 248 p. (1985)

    Google Scholar 

  26. Dehling, H.G., Gottschalk, T., Hoffmann, A.C.: Stochastic Modeling in Process Technology, 279 p. Elsevier Science, London (2007)

    Google Scholar 

  27. Mizonov, V., Balagurov, I., Berthiaux, H., Gatumel, C.: Gatumel Markov chain model of mixing kinetics for a ternary mixture of dissimilar particulate solids. Particuology 31, 80–86 (2016). https://doi.org/10.1016/j.partic.2016.05.006

    Article  Google Scholar 

  28. Akhmadiev, F.G., Gizzyatov, R.F.: Modeling of separation of granular materials on multiple-deck classifiers using the theory of stochastic processes. Theor. Found. Chem. Eng. 52(3), 360–370 (2018)

    Article  Google Scholar 

  29. Zhuang, Y., Chen, X., Liu, D.: Stochastic bubble developing model combined with Markov process of particles for bubbling fluidized beds. Chem. Eng. J. 291, 206–214 (2016) https://doi.org/10.1016/j.cej.2016.01.095

  30. Zhukov, V.P., Belyakov, A.N.: Simulation of combined heterogeneous processes based on discrete models of the Boltzmann equation. Theor. Found. Chem. Eng. 51(1), 88–93 (2017). https://doi.org/10.1134/S0040579517010158 (Springer)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kapranova, A.B., Stenko, D.V., Bahaeva, D.D., Vatagin, A.A., Lebedev, A.E. (2022). Analysis of the Efficiency of the Rotary Method for Producing a Mixture of Granular Raw Materials in the Preparation of a Cyber-Physical Platform. In: Kravets, A.G., Bolshakov, A.A., Shcherbakov, M. (eds) Cyber-Physical Systems: Modelling and Industrial Application. Studies in Systems, Decision and Control, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-030-95120-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95120-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95119-1

  • Online ISBN: 978-3-030-95120-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics