Skip to main content

Imaging in the Work-Up of CSF Leak

  • Chapter
  • First Online:
CSF Rhinorrhea

Abstract

In the diagnostic/pre-operative work-up of cerebrospinal fluid rhinorrhea imaging plays a key role. The localization of the site(s) of the leak is the most obvious main goal of the radiologic investigation, but there are several other critical issues that a proper imaging study can address. Two are the imaging techniques mainly indicated: computer tomography (CT) and magnetic resonance (MR). CT explores bony structures with fine detail, but it has low soft-tissue resolution. Conversely, MR can differentiate and characterize a wide range of soft tissues and fluids, allowing to directly visualize a CSF leakage. It is up to the radiologist to choose the imaging study (or the combination) most suitable for each specific situation. In fact, there is no standard study protocol that can fit all possible patients. Nevertheless, with just a few general indications in mind an informative exam can be obtained with relative ease.

Performing a high-quality exam, though, is just the first part of the job for the radiologist. The next step is the analysis/interpretation of the images. To meet this target, the knowledge of the etiology of the rhinorrhea is of paramount importance, since different etiologies imply different reasoning for the correct interpretation of the radiological images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reddy M, Baugnon K. Imaging of cerebrospinal fluid rhinorrhea and otorrhea. Radiol Clin North Am [Internet]. 2017;55(1):167–87. https://doi.org/10.1016/j.rcl.2016.08.005.

    Article  Google Scholar 

  2. Ommaya A, Di Chiro G, Baldwin M, Pennybacker J. Non-Taumatic cerebrospinal fluid rhinorrhoea. J Neurol Neurosurg Psychiatry. 1968;31(3):214–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Eljazzar R, Loewenstern J, Dai JB, Shrivastava RK, Iloreta AM. Detection of CSF leaks: is there a radiologic standard of care? A systematic review detection of CSF leaks: a systematic review. World Neurosurg [Internet]. 2019;127:307–15. https://doi.org/10.1016/j.wneu.2019.01.299.

    Article  Google Scholar 

  4. Lloyd KM, DelGaudio JM, Hudgins PA. Imaging of skull base cerebrospinal fluid leaks in adults. Radiology. 2008;248(3):725–36.

    Article  PubMed  Google Scholar 

  5. Stone JA, Castillo M, Neelon B, Mukherji SK. Evaluation of CSF leaks: high-resolution CT compared with contrast- enhanced CT and radionuclide cisternography. Am J Neuroradiol. 1999;20(4):706–12.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Mathias T, Levy J, Fatakia A, McCoul ED. Contemporary approach to the diagnosis and management of cerebrospinal fluid rhinorrhea. Ochsner J [Internet]. 2016;16(2):136–42. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27303222

    Google Scholar 

  7. Alonso RC, de la Peña MJ, Caicoya AG, Rodriguez MR, Moreno EA, de Vega Fernandez VM. Spontaneous skull base meningoencephaloceles and cerebrospinal fluid fistulas. Radiographics. 2013;33(2):553–70.

    Article  PubMed  Google Scholar 

  8. Wise SK, Schlosser RJ. Evaluation of spontaneous nasal cerebrospinal fluid leaks. Curr Opin Otolaryngol Head Neck Surg [Internet]. 2007;15(1):28–34. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed8&NEWS=N&AN=2007025754

    Article  Google Scholar 

  9. Algin O, Hakyemez B, Gokalp G, Ozcan T, Korfali E, Parlak M. The contribution of 3D-CISS and contrast-enhanced MR cisternography in detecting cerebrospinal fluid leak in patients with rhinorrhoea. Br J Radiol. 2010;83(987):225–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Prosser JD, Vender JR, Solares CA. Traumatic cerebrospinal fluid leaks. Otolaryngol Clin North Am [Internet]. 2011;44(4):857–73. Available from: http://www.sciencedirect.com/science/article/pii/S0030666511000983

    Article  Google Scholar 

  11. Algin O, Turkbey B. Intrathecal gadolinium-enhanced MR cisternography: a comprehensive review. Am J Neuroradiol [Internet]. 2013;34(1):14–22. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L368319071%5Cn, http://www.ajnr.org/content/34/1/14.full.pdf+html%5Cn, http://dx.doi.org/10.3174/ajnr.A28%5Cn, http://sfx.library.uu.nl/utrecht?sid=EMBASE&issn=01956108&id=doi:10.3174%2Faj

  12. Schlosser RJ, Bolger WE. Nasal cerebrospinal fluid leaks: critical review and surgical considerations. Laryngoscope [Internet]. 2004;114(2):255–65. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed6&NEWS=N&AN=2004068325

    Article  PubMed  Google Scholar 

  13. Coursey CA, Nelson RC, Boll DT, Paulson EK, Ho LM, Neville AM, et al. Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging? Radiographics. 2010;30(4):1037–55.

    Article  PubMed  Google Scholar 

  14. Foust AM, Nguyen XV, Prevedello L, Bourekas EC, Boulter DJ. Dual-energy CT cisternography in the evaluation of CSF leaks: a novel approach. Radiol Case Reports [Internet]. 2018;13(1):237–40. https://doi.org/10.1016/j.radcr.2017.09.005.

    Article  Google Scholar 

  15. Miracle AC, Mukherji SK. Conebeam CT of the head and neck, part 1: physical principles. Am J Neuroradiol. 2009;30(6):1088–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Eley KA, Mcintyre AG, Watt-Smith SR, Golding SJ. “Black bone” MRI: a partial flip angle technique for radiation reduction in craniofacial imaging. Br J Radiol. 2012;85(1011):272–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Eley KA, Watt-Smith SR, Golding SJ. “Black bone” MRI: a potential alternative to CT when imaging the head and neck: report of eight clinical cases and review of the Oxford experience. Br J Radiol. 2012;85(1019):1457–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Eley KA, Watt-Smith SR, Golding SJ. Three-dimensional reconstruction of the craniofacial skeleton with gradient echo magnetic resonance imaging (“black bone”): what is currently possible? J Craniofac Surg. 2017;28(2):463–7.

    Article  PubMed  Google Scholar 

  19. Eberhardt KEW, Tomandl BF, Romstöck J, Ganslandt O, Huk WJ. MR cisternography: a new method for the diagnosis of CSF-fistulas. Skull Base Surg [Internet]. 1999;9(Suppl. 2):11. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L128196783%5Cn, http://sfx.library.uu.nl/utrecht?sid=EMBASE&issn=09387994&id=doi:&atitle=MR+cisternography%3A+a+new+method+for+the+diagnosis+of+CSF+fistulae.&stitle=Eur+Radiol&title=Eu

  20. Selcuk H, Albayram S, Ozer H, Ulus S, Sanus GZ, Kaynar MY, et al. Intrathecal gadolinium-enhanced MR cisternography in the evaluation of CSF leakage. Am J Neuroradiol. 2010;31(1):71–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Muñoz A, Hinojosa J, Esparza J. Cisternography and ventriculography gadopentate dimeglumine–enhanced MR imaging in pediatric patients: preliminary report. Am J Neuroradiol [Internet]. 2007;28(5):889–94. Available from: http://www.ajnr.org/content/28/5/889.abstract

    Google Scholar 

  22. Nacar Dogan S, Kizilkilic O, Kocak B, Isler C, Islak C, Kocer N. Intrathecal gadolinium-enhanced MR cisternography in patients with otorhinorrhea: 10-year experience of a tertiary referral center. Neuroradiology. 2018;60(5):471–7.

    Article  PubMed  Google Scholar 

  23. Arlt S, Cepek L, Rustenbeck HH, Prange H, Reimers CD. Gadolinium encephalopathy due to accidental intrathecal administration of gadopentetate dimeglumine [4]. J Neurol. 2007;254(6):810–2.

    Article  PubMed  Google Scholar 

  24. Aydin K, Terzibasioglu E, Sencer S, Sencer A, Suoglu Y, Karasu A, et al. Localization of cerebrospinal fluid leaks by gadolinium-enhanced magnetic resonance cisternography: a 5-year single-center experience. Neurosurgery [Internet]. 2008;62(3):584–9. https://doi.org/10.1227/01.neu.0000317306.39203.24.

    Article  Google Scholar 

  25. Reeves C, Galang E, Padalia R, Tran N, Padalia D. Intrathecal injection of gadobutrol: a tale of caution. J Pain Palliat Care Pharmacother [Internet]. 2017;31(2):139–43. https://doi.org/10.1080/15360288.2017.1313353.

    Article  Google Scholar 

  26. Li L, Gao FQ, Zhang B, Luo BN, Yang ZY, Zhao J. Overdosage of intrathecal gadolinium and neurological response. Clin Radiol. 2008;63(9):1063–8.

    Article  PubMed  CAS  Google Scholar 

  27. Edeklev CS, Halvorsen M, Løvland G, Vatnehol SAS, Gjertsen Ø, Nedregaard B, et al. Intrathecal use of gadobutrol for glymphatic MR imaging: prospective safety study of 100 patients. Am J Neuroradiol [Internet]. 2019;40(8):1257–64. Available from: http://www.ajnr.org/content/40/8/1257.abstract

    Article  CAS  Google Scholar 

  28. Vanhee A, Paemeleire K, Casselman J, Vanopdenbosch L. MRI with intrathecal gadolinium to detect a CSF leak: feasibility and long term safety from an open label single Centre cohort study (P4.113). Neurol Int. 2016;86(16 Suppl):P4.113. Available from: http://n.neurology.org/content/86/16_Supplement/P4.113.abstract

    Google Scholar 

  29. Gray ST, Wu AW. Pathophysiology of iatrogenic and traumatic skull base injury. Compr Tech CSF Leak Repair Skull Base Reconstr. 2012;74:12–23.

    Article  Google Scholar 

  30. Lin DT, Lin AC. Surgical treatment of traumatic injuries of the cranial base. Otolaryngol Clin North Am [Internet]. 2013;46(5):749–57. Available from: http://www.sciencedirect.com/science/article/pii/S0030666513000753

    Article  PubMed  Google Scholar 

  31. Baugnon KL, Hudgins PA. Skull base fractures and their complications. Neuroimaging Clin N Am [Internet]. 2014;24(3):439–65. https://doi.org/10.1016/j.nic.2014.03.001.

    Article  PubMed  Google Scholar 

  32. Idriz S, Patel JH, Ameli Renani S, Allan R, Vlahos I. CT of normal developmental and variant anatomy of the pediatric skull: distinguishing trauma from normality. Radiographics. 2015;35(5):1585–601.

    Article  PubMed  Google Scholar 

  33. Baban MIA, Hadi M, Gallo S, Zocchi J, Turri-Zanoni M, Castelnuovo P. Radiological and clinical interpretation of the patients with CSF leaks developed during or after endoscopic sinus surgery. Eur Arch Otorhinolaryngol. 2017;274(7):2827–35.

    Article  PubMed  Google Scholar 

  34. Wang EW, Vandergrift WA, Schlosser RJ. Spontaneous CSF leaks. Otolaryngol Clin North Am [Internet]. 2011;44(4):845–56. https://doi.org/10.1016/j.otc.2011.06.018.

    Article  PubMed  Google Scholar 

  35. Raghavan U, Majumdar S, Jones NS. Spontaneous CSF rhinorrhoea from separate defects of the anterior and middle cranial fossa. J Laryngol Otol [Internet]. 2002;116(7):546–7. Available from: https://www.cambridge.org/core/article/spontaneous-csf-rhinorrhoea-from-separate-defects-of-the-anterior-and-middle-cranial-fossa/32E776D3ECFD09DE77076AFF5DE65D0D

    Article  CAS  Google Scholar 

  36. Quint DJ, Levy R, Cornett J, Donovan C, Markert J. Spontaneous CSF fistula through a congenitally fenestrated sphenoid bone. Am J Roentgenol [Internet]. 1996;166(4):952–4. https://doi.org/10.2214/ajr.166.4.8610580.

    Article  CAS  Google Scholar 

  37. Schick B, Brors D, Prescher A. Sternberg’s canal - cause of congenital sphenoidal meningocele. Eur Arch Otorhinolaryngol. 2000;257(8):430–2.

    Article  PubMed  CAS  Google Scholar 

  38. Barañano CF, Curé J, Palmer JN, Woodworth BA. Sternberg’s canal: fact or fiction? Am J Rhinol Allergy. 2009;23(2):167–71.

    Article  PubMed  Google Scholar 

  39. Woodworth BA, Prince A, Chiu AG, Cohen NA, Schlosser RJ, Bolger WE, et al. Spontaneous CSF leaks: a paradigm for definitive repair and management of intracranial hypertension. Otolaryngol Neck Surg [Internet]. 2008;138(6):715–20. https://doi.org/10.1016/j.otohns.2008.02.010.

    Article  Google Scholar 

  40. Settecase F, Harnsberger HR, Michel MA, Chapman P, Glastonbury CM. Spontaneous lateral sphenoid cephaloceles: anatomic factors contributing to pathogenesis and proposed classification. Am J Neuroradiol. 2014;35(4):784–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Aaron GP, Illing E, Lambertsen Z, Ritter M, Middlebrooks EH, Cure J, et al. Enlargement of Meckel’s cave in patients with spontaneous cerebrospinal fluid leaks. Int Forum Allergy Rhinol [Internet]. 2017;7(4):421–4. https://doi.org/10.1002/alr.21891.

    Article  Google Scholar 

  42. Sundararajan SH, Ramos AD, Kishore V, Michael M, Doustaly R, DeRusso F, Patsalides A. Dural venous sinus stenosis: why distinguishing intrinsic-versus-extrinsic stenosis matters. Am J Neuroradiol. 2021; https://doi.org/10.3174/ajnr.A6890.

  43. Priddy B, Hardesty DA, Beer-Furlan A, Otto B, Prevedello DM. Cerebrospinal fluid leak rhinorrhea after systemic erlotinib chemotherapy for metastatic lung cancer: a familiar problem from an unfamiliar culprit. World Neurosurg [Internet]. 2017;108:992.e11–4. Available from: http://www.sciencedirect.com/science/article/pii/S1878875017314936

    Article  Google Scholar 

  44. Lanza DC, O’Brien DA, Kennedy DW. Endoscopic repair of cerebrospinal fluid fistulae and encephaloceles. Laryngoscope [Internet]. 1996;106(9):1119–25. https://doi.org/10.1097/00005537-199609000-00015.

    Article  CAS  Google Scholar 

  45. Castelnuovo P, Dallan I, Battaglia P, Bignami M. Endoscopic endonasal skull base surgery: past, present and future. Eur Arch Otorhinolaryngol. 2010;267(5):649–63.

    Article  PubMed  Google Scholar 

  46. Martin TJ, Loehrl TA. Endoscopic CSF leak repair. Curr Opin Otolaryngol Head Neck Surg [Internet]. 2007;15(1):35–9. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed8&NEWS=N&AN=2007025755

    Article  Google Scholar 

  47. Wormald PJ, Mcdonogh M. The bath-plug closure of anterior skull base cerebrospinal fluid leaks. Am J Rhinol [Internet]. 2003;17(5):299–305. https://doi.org/10.1177/194589240301700508.

    Article  CAS  Google Scholar 

  48. Kassam AB, Thomas A, Carrau RL, Snyderman CH, Vescan A, Prevedello D, et al. Endoscopic reconstruction of the cranial base using a pedicled nasoseptal flap. Neurosurgery. 2008;63(Suppl. 1):44–53.

    Google Scholar 

  49. Mattavelli D, Schreiber A, Ferrari M, Accorona R, Bolzoni Villaret A, Battaglia P, et al. Three-layer reconstruction with iliotibial tract after endoscopic resection of sinonasal tumors. World Neurosurg [Internet]. 2017;101:486–92. Available from: http://www.sciencedirect.com/science/article/pii/S1878875017302395

    Article  Google Scholar 

  50. Leng LZ, Brown S, Anand VK, Schwartz TH. “Gasket-seal” watertight closure in minimal-access endoscopic cranial base surgery. Oper Neurosurg [Internet]. 2008;62(Suppl_5):ONS342-3. https://doi.org/10.1227/01.neu.0000326017.84315.1f.

    Article  Google Scholar 

  51. Wessell A, Singh A, Litvack Z. One-piece modified gasket seal technique introduction background. J Neurol Surg B. 2013;74:305–10.

    Article  Google Scholar 

  52. Zhao D, Tao S, Zhang D, Qin M, Bao Y, Wu A. “Five-layer gasket seal” watertight closure for reconstruction of the skull base in complex bilateral traumatic intraorbital meningoencephaloceles: a case report and literature review. Brain Inj [Internet]. 2018;32(6):804–7. https://doi.org/10.1080/02699052.2018.1440631.

    Article  Google Scholar 

  53. Kang MD, Escott E, Thomas AJ, Carrau RL, Snyderman CH, Kassam AB, et al. The MR imaging appearance of the vascular pedicle nasoseptal flap. Am J Neuroradiol. 2009;30(4):781–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Maroldi R, Ravanelli M, Farina D, Facchetti L, Bertagna F, Lombardi D, et al. Post-treatment evaluation of paranasal sinuses after treatment of sinonasal neoplasms. Neuroimag Clin N Am [Internet]. 2015;25(4):667–85. https://doi.org/10.1016/j.nic.2015.07.009.

    Article  Google Scholar 

  55. Banu MA, Szentirmai O, Mascarenhas L, Salek AA, Anand VK, Schwartz TH. Pneumocephalus patterns following endonasal endoscopic skull base surgery as predictors of postoperative CSF leaks. J Neurosurg JNS [Internet]. 2014;121(4):961–75. Available from: https://thejns.org/view/journals/j-neurosurg/121/4/article-p961.xml

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Maroldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maroldi, R., Palumbo, G. (2022). Imaging in the Work-Up of CSF Leak. In: AlQahtani, A.A., Castelnuovo, P., Casiano, R., Carrau, R.L. (eds) CSF Rhinorrhea. Springer, Cham. https://doi.org/10.1007/978-3-030-94781-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94781-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94780-4

  • Online ISBN: 978-3-030-94781-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics