Skip to main content

Dihydrokaempferol: Advances on Resources, Biosynthesis Pathway, Bioavailability, Bioactivity, and Pharmacology

  • Living reference work entry
  • First Online:
Handbook of Dietary Flavonoids

Abstract

Identifying and characterizing physiologically active chemicals from plant extracts for use in the pharmaceutical industry as well as in the promotion of sustainable diets has become progressively important to researchers. Flavonoids have long been known for their anti-inflammatory and antioxidant properties. Phytoconstituents research of various herbal medications has determined the presence of flavonoids such as kaempferol and its derivatives. Dihydrokaempferol (DHK) is one such flavonoid that may be found in a wide range of foods, fruits, plants, and natural sources. Because of its hydrophilic nature, dihydrokaempferol’s absorption is enhanced by passive diffusion, although study reveals that it may also be absorbed by facilitated dispersion across the membrane. It is known to possess the multiple biological properties including but not limited to anticancer, antihyperglycaemic, anti-inflammatory, and neuroprotective. This chapter in contrast highlights the latest research on dihydrokaempferol’s resources, biosynthesis pathway, bioavailability, biocompatibility, and pharmaceutics to give an insight to the readers and researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmed N (2005) Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res Clin Pract 67:3–21

    Article  CAS  PubMed  Google Scholar 

  • Alam W, Khan H, Shah MA, Cauli O, Saso L (2020) Kaempferol as a dietary anti-inflammatory agent: current therapeutic standing. Molecules 25:4073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashihara H, Deng W-W, Mullen W, Crozier A (2010) Distribution and biosynthesis of flavan-3-ols in Camellia sinensis seedlings and expression of genes encoding biosynthetic enzymes. Phytochemistry 71:559–566

    Article  CAS  PubMed  Google Scholar 

  • Baderschneider B, Winterhalter P (2001) Isolation and characterization of novel benzoates, cinnamates, flavonoids, and lignans from Riesling wine and screening for antioxidant activity. J Agric Food Chem 49:2788–2798

    Article  CAS  PubMed  Google Scholar 

  • Barve A, Chen C, Hebbar V, Desiderio J, Saw CL-L, Kong A-N (2009) Metabolism, oral bioavailability and pharmacokinetics of chemopreventive kaempferol in rats. Biopharm Drug Dispos 30:356–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benedetti A, Fulceri R, Allan BB, Houston P, Sukhodub AL, Marcolongo P, Ethell B, Burchell B, Burchell A (2002) Histone 2A stimulates glucose-6-phosphatase activity by permeabilization of liver microsomes. Biochem J 367:505–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binutu OA, Cordell GA (2001) Constituents of Afzelia bella stem bark. Phytochemistry 56:827–830

    Article  CAS  PubMed  Google Scholar 

  • Bishoyi AK, Sahoo CR, Sahoo AP, Padhy RN (2020) Bio-synthesis of silver nanoparticles with the brackish water blue-green alga Oscillatoria princeps and antibacterial assessment. Appl Nanosci 11:389–398

    Article  Google Scholar 

  • Bruzual De Abreu M, Temraz A, Malafronte N, Gonzalez-Mujica F, Duque S, Braca A (2011) Phenolic derivatives from Ruprechtia polystachya and their inhibitory activities on the Glucose-6-phosphatase system. Chem Biodivers 8:2126–2134

    Article  CAS  Google Scholar 

  • Burchell A, Waddell ID (1991) The molecular basis of the hepatic microsomal glucose-6-phosphatase syste. Biochim Biophy Acta Mol Cell Res 1092:129–137

    Article  CAS  Google Scholar 

  • Butterweck V, Semlin L, Feistel B, Pischel I, Bauer K, Verspohl EJ (2010) Comparative evaluation of two different Opuntia ficus-indica extracts for blood sugar lowering effects in rats. Phytother Res

    Google Scholar 

  • Calderon-Montano JM, Burgos-Moron E, Perez-Guerrero C, Lopez-Lazaro M (2011) A review on the dietary flavonoid kaempferol. Mini-Rev Med Chem 11:298–344

    Article  CAS  PubMed  Google Scholar 

  • Chen C-Y, Lin L-C, Yang W-F, Bordon J, Wang H-MD (2015) An updated organic classification of tyrosinase inhibitors on melanin biosynthesis. Curr Org Chem 19:4–18

    Article  CAS  Google Scholar 

  • Chung S, Chung S (2005) Aldose reductase in diabetic microvascular complications. Curr Drug Targets 6:475–486

    Article  CAS  PubMed  Google Scholar 

  • Chunhakant S, Chaicharoenpong C (2019) Antityrosinase, antioxidant, and cytotoxic activities of phytochemical constituents from Manilkara zapota L. Bark. Molecules 24:2798

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui C-B (2009) Inhibitory activity of caffeoylquinic acids from the aerial parts of Artemisia princeps on rat lens aldose reductase and on the formation of advanced glycation end products. J Korean Soc Appl Biol Chem 52:655–662

    Article  CAS  Google Scholar 

  • Cui S, Cui Y, Li Y, Zhang Y, Wang H, Qin W, Chen X, Ding S, Wu D, Guo H (2018) Inhibition of cardiac hypertrophy by aromadendrin through down-regulating NFAT and MAPKs pathways. Biochem Biophys Res Commun 506:805–811

    Article  CAS  PubMed  Google Scholar 

  • Dabeek WM, Marra MV (2019) Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients 11:2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dat LD, Thao NP, Luyen BTT, Tai BH, Jeong MH, Woo MH, Kim YH (2016) Identification of six new lupane-type triterpenoids from Acanthopanax koreanum leaves and their tyrosinase inhibitory activities. Bioorg Med Chem Lett 26:1061–1067

    Article  CAS  PubMed  Google Scholar 

  • Day AJ, Mellon F, Barron D, Sarrazin G, Morgan MRA, Williamson G (2001) Human metabolism of dietary flavonoids: identification of plasma metabolites of quercetin. Free Radic Res 35:941–952

    Article  CAS  PubMed  Google Scholar 

  • de Vrie JHM, Janssen PLTMK, Hollman PCH, van Staveren WA, Katan MB (1997) Consumption of quercetin and kaempferol in free-living subjects eating a variety of diets. Cancer Lett 114:141–144

    Article  Google Scholar 

  • de Vries JH, Hollman PC, Meyboom S, Buysman MN, Zock PL, van Staveren WA, Katan MB (1998) Plasma concentrations and urinary excretion of the antioxidant flavonols quercetin and kaempferol as biomarkers for dietary intake. Am J Clin Nutr 68:60–65

    Article  PubMed  Google Scholar 

  • Dirkx E, da Costa Martins PA, De Windt LJ (2013) Regulation of fetal gene expression in heart failure. Biochim Biophys Acta (BBA) - Mol Basis Dis 1832:2414–2424

    Article  CAS  Google Scholar 

  • Duan L, Ding W, Liu X, Cheng X, Cai J, Hua E, Jiang H (2017) Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae. Microb Cell Factories 16:1–10

    Article  CAS  Google Scholar 

  • DuPont MS, Day AJ, Bennett RN, Mellon FA, Kroon PA (2004) Absorption of kaempferol from endive, a source of kaempferol-3-glucuronide, in humans. Eur J Clin Nutr 58:947–954

    Article  CAS  PubMed  Google Scholar 

  • Elmongy EI, Negm WA, Elekhnawy E, El-Masry TA, Attallah NGM, Altwaijry N, Batiha GE-S, El-Sherbeni SA (2022) Antidiarrheal and antibacterial activities of Monterey cypress phytochemicals: in vivo and in vitro approach. Molecules 27:346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sawi SA (2000) A new rare 8-C-glucosylflavonoid and other eight flavonoids from the molluscicidal plant Acacia saligna Wendl. Pharm Pharmacol Lett 11:30–33

    Google Scholar 

  • Filippa B, Yoshikazu T, John M (2013) Flavonoid 3′,5′ hydroxylase gene sequences and uses therefor. In: States U (ed) Google patents. Suntory Holdings Ltd, United States

    Google Scholar 

  • Gecibesler IH, Aydin M (2020) Plasma protein binding of herbal-flavonoids to human serum albumin and their anti-proliferative activities. An Acad Bras Cienc 92

    Google Scholar 

  • Gillies CL, Abrams KR, Lambert PC, Cooper NJ, Sutton AJ, Hsu RT, Khunti K (2007) Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ 334:299

    Article  PubMed  PubMed Central  Google Scholar 

  • González A, Schelbert EB, Díez J, Butler J (2018) Myocardial interstitial fibrosis in heart failure. J Am Coll Cardiol 71:1696–1706

    Article  PubMed  Google Scholar 

  • Graefe EU, Wittig J, Mueller S, Riethling A-K, Uehleke B, Drewelow B, Pforte H, Jacobasch G, Derendorf H, Veit M (2001) Pharmacokinetics and bioavailability of quercetin glycosides in humans. J Clin Pharmacol 41:492–499

    Article  CAS  PubMed  Google Scholar 

  • Hahm S-W, Park J, Oh S-Y, Lee C-W, Park K-Y, Kim H, Son Y-S (2015) Anticancer properties of extracts from Opuntia humifusa against human cervical carcinoma cells. J Med Food 18:31–44

    Article  CAS  PubMed  Google Scholar 

  • Heger J, Schulz R, Euler G (2016) Molecular switches under TGFβ signalling during progression from cardiac hypertrophy to heart failure. Br J Pharmacol 173:3–14

    Article  CAS  PubMed  Google Scholar 

  • Hertog MGL, Hollman PCH, Katan MB, Kromhout D (1993) Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands. Nutr Cancer 20:21–29

    Article  CAS  PubMed  Google Scholar 

  • Hollman PCH, Gaag MVD, Mengelers MJB, Van Trijp JMP, De Vries JHM, Katan MB (1996) Absorption and disposition kinetics of the dietary antioxidant quercetin in man. Free Radic Biol Med 21:703–707

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Mao J, Ji Z, Ailati A (2015) Stachyose-induced apoptosis of Caco-2 cells via the caspase-dependent mitochondrial pathway. Food Funct 6:765–771

    Article  CAS  PubMed  Google Scholar 

  • Imran M, Salehi B, Sharifi-Rad J, Aslam Gondal T, Saeed F, Imran A, Shahbaz M, Tsouh Fokou PV, Umair Arshad M, Khan H, Guerreiro SG, Martins N, Estevinho LM (2019) Kaempferol: a key emphasis to its anticancer potential. Molecules 24:2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon YE, Yin XF, Choi DB, Lim SS, Kang I-J, Shim J-H (2011) Inhibitory activity of aromadendrin from prickly pear (Opuntia ficus-indica) root on aldose reductase and the formation of advanced glycation end products. Food Sci Biotechnol 20:1283–1288

    Article  CAS  Google Scholar 

  • Kashyap D, Sharma A, Tuli HS, Sak K, Punia S, Mukherjee TK (2017) Kaempferol – a dietary anticancer molecule with multiple mechanisms of action: recent trends and advancements. J Funct Foods 30:203–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawanishi K, Ueda H, Moriyasu M (2003) Aldose reductase inhibitors from the nature. Curr Med Chem 10:1353–1374

    Article  CAS  PubMed  Google Scholar 

  • Koca U, Süntar I, Akkol EK, Yılmazer D, Alper M (2011) Wound repair potential of Olea europaea L. Leaf extracts revealed by in vivo experimental models and comparative evaluation of the extracts’ antioxidant activity. J Med Food 14:140–146

    Article  PubMed  Google Scholar 

  • Koopman F, Beekwilder J, Crimi B, van Houwelingen A, Hall RD, Bosch D, van Maris AJA, Pronk JT, Daran J-M (2012) De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb Cell Factories 11:1–15

    Article  Google Scholar 

  • Krehl WA (1983) The role of nutrition in maintaining health and preventing disease. Health Values 7:9–13

    CAS  PubMed  Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:1–16

    Google Scholar 

  • Kwak JH, Kang MW, Roh JH, Choi SU, Zee OP (2010) Cytotoxic phenolic compounds from Chionanthus retusus. Arch Pharm Res 32:1681–1687

    Article  Google Scholar 

  • Lazzeroni D, Rimoldi O, Camici PG (2016) From left ventricular hypertrophy to dysfunction and failure. Circ J 80:555–564

    Article  PubMed  Google Scholar 

  • Lee C-H, Lim H, Moon S, Shin C, Kim S, Kim B-J, Lim Y (2007) Novel anticancer agent, benzyldihydroxyoctenone, isolated from Streptomyces sp. causes G1 cell cycle arrest and induces apoptosis of HeLa cells. Cancer Sci 98:795–802

    Article  CAS  PubMed  Google Scholar 

  • Lee J-W, Kim NH, Kim J-Y, Park J-H, Shin S-Y, Kwon Y-S, Lee HJ, Kim S-S, Chun W (2013) Aromadendrin inhibits lipopolysaccharide-induced nuclear translocation of NF-κB and phosphorylation of JNK in RAW 264.7 macrophage cells. Biomol Ther 21:216–221

    Article  Google Scholar 

  • Lee H-S, Kim E-N, Jeong G-S (2021) Aromadendrin protects neuronal cells from methamphetamine-induced neurotoxicity by regulating endoplasmic reticulum stress and PI3K/Akt/mTOR signaling pathway. Int J Mol Sci 22:2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewartowski B, Mackiewicz U (2006) Cellular signal transduction pathways in cardiac hypertrophy and heart failure. Kardiol Pol 64:S591–S600

    PubMed  Google Scholar 

  • Liang X, Hu C, Liu C, Yu K, Zhang J, Jia Y (2020) Dihydrokaempferol (DHK) ameliorates severe acute pancreatitis (SAP) via Keap1/Nrf2 pathway. Life Sci 261:118340

    Article  CAS  PubMed  Google Scholar 

  • Lutskii VI, Gromova AS, Tyukavkina NA (1971) Aromadendrin, apigenin, and kaempferol from the wood of Pinus sibirica. Chem Nat Compd 7:197–198

    Article  Google Scholar 

  • Malla S, Koffas MAG, Kazlauskas RJ, Kim B-G (2012) Production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli. Appl Environ Microbiol 78:684–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    Article  CAS  PubMed  Google Scholar 

  • Martín JF, Liras P (2022) Comparative molecular mechanisms of biosynthesis of Naringenin and related Chalcones in actinobacteria and plants: relevance for the obtention of potent bioactive metabolites. Antibiotics 11:82

    Article  PubMed  PubMed Central  Google Scholar 

  • McCormack J, Westergaard N, Kristiansen M, Brand C, Lau J (2001) Pharmacological approaches to inhibit endogenous glucose production as a means of anti-diabetic therapy. Curr Pharm Des 7:1451–1474

    Article  CAS  PubMed  Google Scholar 

  • Mercader-Ros MT, Lucas-Abellán C, Fortea MI, Serrano-Martínez A, Gabaldón JA, Núñez-Delicado E (2013) Biological activities of Kaempferol: effect of cyclodextrins complexation on the properties of Kaempferol. In: Villers G, Fougere Y (eds) Kaempferol: chemistry, natural occurrences, and health benefits. Nova Science Publishers, New York, pp 1–32

    Google Scholar 

  • Muthukrishnan SD, Kaliyaperumal A, Subramaniyan A (2014) Identification and determination of flavonoids, carotenoids and chlorophyll concentration in Cynodon dactylon (L.) by HPLC analysis. Nat Prod Res 29:785–790

    Article  PubMed  Google Scholar 

  • Nakamura M, Sadoshima J (2018) Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 15:387–407

    Article  CAS  PubMed  Google Scholar 

  • Negm WA, Abo El-Seoud KA, Kabbash A, Kassab AA, El-Aasr M (2020) Hepatoprotective, cytotoxic, antimicrobial and antioxidant activities of Dioon spinulosum leaves Dyer Ex Eichler and its isolated secondary metabolites. Nat Prod Res 35:5166–5176

    Article  PubMed  Google Scholar 

  • Nimura Y, Futamura Y (2018) Dihydrokaempferol derivative having lipolytic action and production method thereof. In: Japan (ed) Google patent, Japan

    Google Scholar 

  • O’Leary KA, Day AJ, Needs PW, Sly WS, O’Brien NM, Williamson G (2001) Flavonoid glucuronides are substrates for human liver β-glucuronidase. FEBS Lett 503:103–106

    Article  PubMed  Google Scholar 

  • Orhan I, Küpeli E, TerzioÄŸlu S, Yesilada E (2007) Bioassay-guided isolation of kaempferol-3-O-β-d-galactoside with anti-inflammatory and antinociceptive activity from the aerial part of Calluna vulgaris L. J Ethnopharmacol 114:32–37

    Article  CAS  PubMed  Google Scholar 

  • Owens DK, Hale T, Wilson LJ, McIntosh CA (2002) Quantification of the production of dihydrokaempferol by flavanone 3-hydroxytransferase using capillary electrophoresis. Phytochem Anal 13:69–74

    Article  CAS  PubMed  Google Scholar 

  • Pan D, Li N, Liu Y, Xu Q, Liu Q, You Y, Wei Z, Jiang Y, Liu M, Guo T, Cai X, Liu X, Wang Q, Liu M, Lei X, Zhang M, Zhao X, Lin C (2018) Kaempferol inhibits the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes by blocking activation of the MAPK pathway. Int Immunopharmacol 55:174–182

    Article  CAS  PubMed  Google Scholar 

  • Park JS, Rho HS, Kim DH, Chang IS (2006) Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. J Agric Food Chem 54:2951–2956

    Article  CAS  PubMed  Google Scholar 

  • Peyroux J, Sternberg M (2006) Advanced glycation endproducts (AGEs): pharmacological inhibition in diabetes. Pathol Biol 54:405–419

    Article  CAS  PubMed  Google Scholar 

  • Piskula MK, Terao J (1998) Quercetin’s solubility affects its accumulation in rat plasma after Oral administration. J Agric Food Chem 46:4313–4317

    Article  CAS  Google Scholar 

  • Portelli M, Jones CD (2017) Severe acute pancreatitis: pathogenesis, diagnosis and surgical management. Hepatobiliary Pancreat Dis Int 16:155–159

    Article  CAS  PubMed  Google Scholar 

  • Rackow EC, Astiz ME (1991) Pathophysiology and treatment of septic shock. JAMA 266:548–554

    Article  CAS  PubMed  Google Scholar 

  • Rahman MA, Shirai M, Aziz MA, Ushirokita R, Kubota S, Suzuki H, Azuma Y (2015) An epistatic effect of apaf-1 and caspase-9 on chlamydial infection. Apoptosis 20:1271–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redzynia I, Ziółkowska N, Majzner W, Willför S, Sjöholm R, Eklund P, Bujacz G (2009) Structural investigation of biologically active phenolic compounds isolated from European tree species. Molecules 14:4147–4158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman MU, Yoshihisa Y, Miyamoto Y, Shimizu T (2012) The anti-inflammatory effects of platinum nanoparticles on the lipopolysaccharide-induced inflammatory response in RAW 264.7 macrophages. Inflamm Res 61:1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Rein MJ, Renouf M, Cruz-Hernandez C, Actis-Goretta L, Thakkar SK, da Silva Pinto M (2013) Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br J Clin Pharmacol 75:588–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojekar MV (2015) A short review of pigmentation disorders in systemic diseases. J Pigment Disord 02:2376

    Article  Google Scholar 

  • Sanna B, Bueno OF, Dai Y-S, Wilkins BJ, Molkentin JD (2005) Direct and indirect interactions between calcineurin-NFAT and MEK1-extracellular signal-regulated kinase 1/2 signaling pathways regulate cardiac gene expression and cellular growth. Mol Cell Biol 25:865–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130:2073S–2085S

    Article  CAS  PubMed  Google Scholar 

  • Seo UM, Nguyen DH, Zhao BT, Min BS, Woo MH (2017) Flavanonol glucosides from the aerial parts of Agrimonia pilosa Ledeb. and their acetylcholinesterase inhibitory effects. Carbohydr Res 445:75–79

    Article  CAS  PubMed  Google Scholar 

  • Sharafi H, Rahimi R (2012) The effect of resistance exercise on p53, Caspase-9, and Caspase-3 in trained and untrained men. J Strength Cond Res 26:1142–1148

    Article  PubMed  Google Scholar 

  • Shen G, Kong A-N (2009) Nrf2 plays an important role in coordinated regulation of phase II drug metabolism enzymes and phase III drug transporters. Biopharm Drug Dispos 30:345–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suleiman MHA (2015) Prenylated flavonoids from the stem wood of Commiphora opobalsamum (L.) Engl. (Burseraceae). J King Saud Univ Sci 27:71–75

    Article  Google Scholar 

  • Sweet MJ, Hume DA (1996) Endotoxin signal transduction in macrophages. J Leukoc Biol 60:8–26

    Article  CAS  PubMed  Google Scholar 

  • Tazzini N (2015) Flavonoid biosynthesis pathway: genes and enzymes. Tuscany Diet

    Google Scholar 

  • Uraide Y, Gokita T, Kamada I, Murakoshi R (2013) Agent for improving quality of sleep. In: (PCT), W. (ed) Google patents

    Google Scholar 

  • Venditti A, Serrilli AM, Rizza L, Frasca G, Cardile V, Bonina FP, Bianco A (2013) Aromadendrin, a new component of the flavonoid pattern of Olea europaea L. and its anti-inflammatory activity. Nat Prod Res 27:340–349

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Cao Q, Zhang X, Wang Y, Zhou C (2018) Dihydrokaempferol glucoside compound and its extracting method. In: China (ed) Google patents. Central South University of Forestry and Technology, China

    Google Scholar 

  • Wen Y, Liu X (2017) Application of the flavanone kind composition in farnesoid X receptor activator is prepared. In: China (ed) Google patents. SUZHOU KAIXIANG BIOTECHNOLOGY CO Ltd, China

    Google Scholar 

  • Wong CC, Botting NP, Orfila C, Al-Maharik N, Williamson G (2011) Flavonoid conjugates interact with organic anion transporters (OATs) and attenuate cytotoxicity of adefovir mediated by organic anion transporter 1 (OAT1/SLC22A6). Biochem Pharmacol 81:942–949

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Capanoglu E, Jassbi AR, Miron A (2015) Advance on the Flavonoid C-glycosides and health benefits. Crit Rev Food Sci Nutr 56:S29–S45

    Article  Google Scholar 

  • Yang L, Zhang H-w, Hu R, Yang Y, Qi Q, Lu N, Liu W, Chu Y-y, You Q-d, Guo Q-l (2009) Wogonin induces G1 phase arrest through inhibiting Cdk4 and cyclin D1 concomitant with an elevation in p21Cip1 in human cervical carcinoma HeLa cells. Biochem Cell Biol 87:933–942

    Article  CAS  PubMed  Google Scholar 

  • Zhang WY, Lee J-J, Kim I-S, Kim Y, Myung C-S (2011) Stimulation of glucose uptake and improvement of insulin resistance by aromadendrin. Pharmacology 88:266–274

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yan G, Sun C, Li H, Fu Y, Xu W (2018) Apoptosis effects of Dihydrokaempferol isolated from bauhinia championii on Synoviocytes. Evid Based Complement Alternat Med 2018:1–10

    Google Scholar 

  • Zhang J, Hu C, Li X, Liang L, Zhang M, Chen B, Liu X, Yang D (2021) Protective effect of dihydrokaempferol on acetaminophen-induced liver injury by activating the SIRT1 pathway. Am J Chin Med 49:705–718

    Article  CAS  PubMed  Google Scholar 

  • Zheng JH, Viacava Follis A, Kriwacki RW, Moldoveanu T (2016) Discoveries and controversies in BCL-2 protein-mediated apoptosis. FEBS J 283:2690–2700

    Article  CAS  PubMed  Google Scholar 

  • Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA (2019) A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem 34:279–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou D-m, Brewer M, Garcia F, Feugang JM, Wang J, Zang R, Liu H, Zou C (2005) Cactus pear: a natural product in cancer chemoprevention. Nutr J 4:1–12

    Article  Google Scholar 

  • Zulhendri F, Perera CO, Chandrasekaran K, Ghosh A, Tandean S, Abdulah R, Herman H, Lesmana R (2022) Propolis of stingless bees for the development of novel functional food and nutraceutical ingredients: a systematic scoping review of the experimental evidence. J Funct Foods 88:104902

    Article  CAS  Google Scholar 

  • Zuo A-R, Dong H-H, Yu Y-Y, Shu Q-L, Zheng L-X, Yu X-Y, Cao S-W (2018) The antityrosinase and antioxidant activities of flavonoids dominated by the number and location of phenolic hydroxyl groups. Chin Med 13:1–12

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bairong Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Singla, R.K., Chopra, H., Dubey, A.K., Shen, B. (2023). Dihydrokaempferol: Advances on Resources, Biosynthesis Pathway, Bioavailability, Bioactivity, and Pharmacology. In: Xiao, J. (eds) Handbook of Dietary Flavonoids. Springer, Cham. https://doi.org/10.1007/978-3-030-94753-8_87-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94753-8_87-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94753-8

  • Online ISBN: 978-3-030-94753-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics