Skip to main content

Rationale of Tendon-to-Bone Healing

  • Chapter
  • First Online:
Fundamentals of the Shoulder

Abstract

Rotator cuff tears affect 30–50% of people older than 50 years. With recent population aging and increase in functional demands of elderly people, there is growing interest in rotator cuff disorders. Despite the constant improvements in surgical techniques and technologies, rotator cuff re-tear after surgical repair remains a significant problem involving up to 20–40% of small-to-medium tears and till 90% or more of large or massive tears. This high re-tear rate has arisen the interest in the tendon-to-bone healing processes and on the possible interventions to strengthen this process. So far, two are the ways that have been most explored to implement the usual surgical techniques: “biochemical augmentation” (adding stem cells and macromolecules with a predominant biochemical effect) and “biomechanical augmentation” (adding grafts that exercise a primarily mechanical effect, while still presenting some degree of biological healing). In this chapter, we present the most used augmentation techniques to enhance tendon-to-bone-healing in rotator cuff repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamaguchi K, Ditsios K, Middleton WD, Hildebolt CF, Galatz LM, Teefey SA. The demographic and morphological features of rotator cuff disease: a comparison of asymptomatic and symptomatic shoulders. J Bone Joint Surg Am. 2006;88(8):1699–704.

    Article  PubMed  Google Scholar 

  2. Isaac C, Gharaibeh B, Witt M, Wright VJ, Huard J. Biologic approaches to enhance rotator cuff healing after injury. J Shoulder Elbow Surg. 2012;21(2):181–90.

    Article  PubMed  Google Scholar 

  3. Thangarajah T, Pendegrass CJ, Shahbazi S, Lambert S, Alexander S, Blunn GW. Augmentation of rotator cuff repair with soft tissue scaffolds. Orthop J Sports Med. 2015;3(6):232596711558749.

    Article  Google Scholar 

  4. Zhao J, Zhao S, Zhao J, Dong S, Huangfu X, Li B, et al. Biological augmentation of rotator cuff repair using bFGF-loaded electrospun poly(lactide-co-glycolide) fibrous membranes. Int J Nanomedicine. 2014;9:2373–85.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hakimi O, Mouthuy P-A, Carr A. Synthetic and degradable patches: an emerging solution for rotator cuff repair. Int J Exp Pathol. 2013;94(4):287–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boileau P. Arthroscopic repair of full-thickness tears of the supraspinatus: does the tendon really heal? J Bone Joint Surg Am. 2005;87(6):1229.

    PubMed  Google Scholar 

  7. Bishop J, Klepps S, Lo IK, Bird J, Gladstone JN, Flatow EL. Cuff integrity after arthroscopic versus open rotator cuff repair: a prospective study. J Shoulder Elbow Surg. 2006;15(3):290–9.

    Article  PubMed  Google Scholar 

  8. Sears BW, Choo A, Yu A, Greis A, Lazarus M. Clinical outcomes in patients undergoing revision rotator cuff repair with extracellular matrix augmentation. Orthopedics. 2015;38(4):e292–6.

    Article  PubMed  Google Scholar 

  9. Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am. 2004;86(2):219–24.

    Article  PubMed  Google Scholar 

  10. Björnsson HC, Norlin R, Johansson K, Adolfsson LE. The influence of age, delay of repair, and tendon involvement in acute rotator cuff tears: structural and clinical outcomes after repair of 42 shoulders. Acta Orthop. 2011;82(2):187–92.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Patel S, Gualtieri AP, Lu HH, Levine WN. Advances in biologic augmentation for rotator cuff repair: biologic augmentation for rotator cuff repair. Ann N Y Acad Sci. 2016;1383(1):97–114.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jensen PT, Lambertsen KL, Frich LH. Assembly, maturation, and degradation of the supraspinatus enthesis. J Shoulder Elbow Surg. 2018;27(4):739–50.

    Article  PubMed  Google Scholar 

  13. Galatz L, Rothermich S, VanderPloeg K, Petersen B, Sandell L, Thomopoulos S. Development of the supraspinatus tendon-to-bone insertion: localized expression of extracellular matrix and growth factor genes. J Orthop Res. 2007;25(12):1621–8.

    Article  PubMed  Google Scholar 

  14. Shen G. The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod Craniofac Res. 2005;8(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  15. Hettrich CM, Gasinu S, Beamer BS, Stasiak M, Fox A, Birmingham P, et al. The effect of mechanical load on tendon-to-bone healing in a rat model. Am J Sports Med. 2014;42(5):1233–41.

    Article  PubMed  Google Scholar 

  16. Dyment NA, Breidenbach AP, Schwartz AG, Russell RP, Aschbacher-Smith L, Liu H, et al. Gdf5 progenitors give rise to fibrocartilage cells that mineralize via hedgehog signaling to form the zonal enthesis. Dev Biol. 2015;405(1):96–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schär MO, Rodeo SA. Biology of injury and repair of soft tissues of the shoulder. In: Milano G, Grasso A, editors. Shoulder arthroscopy. London: Springer; 2014. p. 59–72. [cited 2020 Dec 18]. https://doi.org/10.1007/978-1-4471-5427-3_5.

    Chapter  Google Scholar 

  18. Avanzi P, Dei Giudici L, Gigante A, Zorzi C. How to manage failed rotator cuff repair: biologic augmentation. In: Milano G, Grasso A, Calvo A, Brzóska R, editors. Management of failed shoulder surgery. Berlin: Springer; 2018. p. 219–28. [cited 2020 Dec 18]. https://doi.org/10.1007/978-3-662-56504-9_29.

    Chapter  Google Scholar 

  19. Valencia Mora M, Ruiz Ibán MA, Díaz Heredia J, Barco Laakso R, Cuéllar R, Arranz MG, M. Stem cell therapy in the management of shoulder rotator cuff disorders. World J Stem Cells. 2015;7(4):691.

    Article  PubMed  Google Scholar 

  20. Gulotta LV, Kovacevic D, Ehteshami JR, Dagher E, Packer JD, Rodeo SA. Application of bone marrow-derived mesenchymal stem cells in a rotator cuff repair model. Am J Sports Med. 2009;37(11):2126–33.

    Article  PubMed  Google Scholar 

  21. Valencia Mora M, Ruiz Ibán MA, Díaz Heredia J, Barco Laakso R, Cuéllar R, García AM. Stem cell therapy in the management of shoulder rotator cuff disorders. World J Stem Cells. 2015;7(4):691–9.

    Article  PubMed  Google Scholar 

  22. Gulotta LV, Kovacevic D, Montgomery S, Ehteshami JR, Packer JD, Rodeo SA. Stem cells genetically modified with the developmental gene MT1-MMP improve regeneration of the supraspinatus tendon-to-bone insertion site. Am J Sports Med. 2010;38(7):1429–37.

    Article  PubMed  Google Scholar 

  23. Hernigou P, Flouzat Lachaniette CH, Delambre J, Zilber S, Duffiet P, Chevallier N, et al. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study. Int Orthop. 2014;38(9):1811–8.

    Article  PubMed  Google Scholar 

  24. Mazzocca AD, McCarthy MBR, Chowaniec DM, Cote MP, Arciero RA, Drissi H. Rapid isolation of human stem cells (connective tissue progenitor cells) from the proximal humerus during arthroscopic rotator cuff surgery. Am J Sports Med. 2010;38(7):1438–47.

    Article  PubMed  Google Scholar 

  25. Kida Y, Morihara T, Matsuda K-I, Kajikawa Y, Tachiiri H, Iwata Y, et al. Bone marrow-derived cells from the footprint infiltrate into the repaired rotator cuff. J Shoulder Elbow Surg. 2013;22(2):197–205.

    Article  PubMed  Google Scholar 

  26. Bilsel K, Yildiz F, Kapicioglu M, Uzer G, Elmadag M, Pulatkan A, et al. Efficacy of bone marrow-stimulating technique in rotator cuff repair. J Shoulder Elbow Surg. 2017;26(8):1360–6.

    Article  PubMed  Google Scholar 

  27. Taniguchi N, Suenaga N, Oizumi N, Miyoshi N, Yamaguchi H, Inoue K, et al. Bone marrow stimulation at the footprint of arthroscopic surface-holding repair advances cuff repair integrity. J Shoulder Elbow Surg. 2015;24(6):860–6.

    Article  PubMed  Google Scholar 

  28. Jo CH, Shin JS, Park IW, Kim H, Lee SY. Multiple channeling improves the structural integrity of rotator cuff repair. Am J Sports Med. 2013;41(11):2650–7.

    Article  PubMed  Google Scholar 

  29. Li Z, Zhang Y. Efficacy of bone marrow stimulation in arthroscopic repair of full thickness rotator cuff tears: a meta-analysis. J Orthop Surg Res. 2019;14(1):36. https://doi.org/10.1186/s13018-019-1072-6. Jan 29 [cited 2020 Dec 18];14. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6352336/

    Article  PubMed  PubMed Central  Google Scholar 

  30. Milano G, Saccomanno MF, Careri S, Taccardo G, De Vitis R, Fabbriciani C. Efficacy of marrow-stimulating technique in arthroscopic rotator cuff repair: a prospective randomized study. Arthroscopy. 2013;29(5):802–10.

    Article  PubMed  Google Scholar 

  31. Gulotta LV, Kovacevic D, Packer JD, Deng XH, Rodeo SA. Bone marrow–derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model. Am J Sports Med. 2011;39(6):1282–9.

    Article  PubMed  Google Scholar 

  32. Valencia Mora M, Antuña Antuña S, Arranz García M, Carrascal MT, Barco R. Application of adipose tissue-derived stem cells in a rat rotator cuff repair model. Injury. 2014;45:S22–7.

    Article  PubMed  Google Scholar 

  33. Oh JH, Chung SW, Kim SH, Chung JY, Kim JY. 2013 Neer award: effect of the adipose-derived stem cell for the improvement of fatty degeneration and rotator cuff healing in rabbit model. J Shoulder Elbow Surg. 2014;23(4):445–55.

    Article  PubMed  Google Scholar 

  34. Pelinkovic D, Lee J-Y, Engelhardt M, Rodosky M, Cummins J, Fu FH, et al. Muscle cell-mediated gene delivery to the rotator cuff. Tissue Eng. 2003;9(1):143–51.

    Article  CAS  PubMed  Google Scholar 

  35. Coleman S, Ehteshami J, Kisiday J, Altchek D, Warren R, Turner A. The effects of mesenchymal stem cells on rotator cuff muscle in a chronic injury model in sheep. Paper No 167. In: American Shoulder and Elbow Surgeons 2009 Closed Meeting. October 24-27, 2009 New York.

    Google Scholar 

  36. Shen W, Chen J, Yin Z, Chen X, Liu H, Heng BC, et al. Allogenous tendon stem/progenitor cells in silk scaffold for functional shoulder repair. Cell Transplant. 2012;21(5):943–58.

    Article  PubMed  Google Scholar 

  37. Utsunomiya H, Uchida S, Sekiya I, Sakai A, Moridera K, Nakamura T. Isolation and characterization of human mesenchymal stem cells derived from shoulder tissues involved in rotator cuff tears. Am J Sports Med. 2013;41(3):657–68.

    Article  PubMed  Google Scholar 

  38. Kim Y-S, Lee H-J, Ok J-H, Park J-S, Kim D-W. Survivorship of implanted bone marrow-derived mesenchymal stem cells in acute rotator cuff tear. J Shoulder Elbow Surg. 2013;22(8):1037–45.

    Article  PubMed  Google Scholar 

  39. Otarodifard K, Bruce Canham R, Galatz LM. Biologic augmentation of rotator cuff repair. Semin Arthroplasty. 2014;25(4):220–5.

    Article  Google Scholar 

  40. Kobayashi M, Itoi E, Minagawa H, Miyakoshi N, Takahashi S, Tuoheti Y, et al. Expression of growth factors in the early phase of supraspinatus tendon healing in rabbits. J Shoulder Elbow Surg. 2006;15(3):371–7.

    Article  PubMed  Google Scholar 

  41. Würgler-Hauri CC, Dourte LM, Baradet TC, Williams GR, Soslowsky LJ. Temporal expression of 8 growth factors in tendon-to-bone healing in a rat supraspinatus model. J Shoulder Elbow Surg. 2007;16(5):S198–203.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dohan Ehrenfest DM, Rasmusson L, Albrektsson T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009;27(3):158–67.

    Article  CAS  PubMed  Google Scholar 

  43. Lu HH, Vo JM, Chin HS, Lin J, Cozin M, Tsay R, et al. Controlled delivery of platelet-rich plasma-derived growth factors for bone formation. J Biomed Mater Res A. 2008;86A(4):1128–36.

    Article  CAS  Google Scholar 

  44. Hoppe S, Alini M, Benneker LM, Milz S, Boileau P, Zumstein MA. Tenocytes of chronic rotator cuff tendon tears can be stimulated by platelet-released growth factors. J Shoulder Elbow Surg. 2013;22(3):340–9.

    Article  PubMed  Google Scholar 

  45. Dolkart O, Chechik O, Zarfati Y, Brosh T, Alhajajra F, Maman E. A single dose of platelet-rich plasma improves the organization and strength of a surgically repaired rotator cuff tendon in rats. Arch Orthop Trauma Surg. 2014;134(9):1271–7.

    Article  PubMed  Google Scholar 

  46. Charousset C, Zaoui A, Bellaïche L, Piterman M. Does autologous leukocyte-platelet–rich plasma improve tendon healing in arthroscopic repair of large or massive rotator cuff tears? Arthroscopy. 2014;30(4):428–35.

    Article  PubMed  Google Scholar 

  47. Ruiz-Moneo P, Molano-Muñoz J, Prieto E, Algorta J. Plasma rich in growth factors in arthroscopic rotator cuff repair: a randomized, double-blind, controlled clinical trial. Arthroscopy. 2013;29(1):2–9.

    Article  PubMed  Google Scholar 

  48. Weber SC, Kauffman JI, Parise C, Weber SJ, Katz SD. Platelet-rich fibrin matrix in the management of arthroscopic repair of the rotator cuff: a prospective, randomized. Double-blinded study. Am J Sports Med. 2013;41(2):263–70.

    Article  PubMed  Google Scholar 

  49. Molloy T, Wang Y, Murrell GAC. The roles of growth factors in tendon and ligament healing. Sports Med. 2003;33(5):381–94.

    Article  PubMed  Google Scholar 

  50. Hsu C, Chang J. Clinical implications of growth factors in flexor tendon wound healing. J Hand Surg Am. 2004;29(4):551–63.

    Article  PubMed  Google Scholar 

  51. Kim HM, Galatz LM, Das R, Havlioglu N, Rothermich SY, Thomopoulos S. The role of transforming growth factor beta isoforms in tendon-to-bone healing. Connect Tissue Res. 2011;52(2):87–98.

    Article  CAS  PubMed  Google Scholar 

  52. Kovacevic D, Fox AJ, Bedi A, Ying L, Deng X-H, Warren RF, et al. Calcium-phosphate matrix with or without TGF-β 3 improves tendon-bone healing after rotator cuff repair. Am J Sports Med. 2011;39(4):811–9.

    Article  PubMed  Google Scholar 

  53. Benjamin M, Ralphs JR. Fibrocartilage in tendons and ligaments—an adaptation to compressive load. J Anat. 1998;193(4):481–94.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF. Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg Am. 1993;75(12):1795–803.

    Article  CAS  PubMed  Google Scholar 

  55. Seeherman HJ, Archambault JM, Rodeo SA, Turner AS, Zekas L, D’Augusta D, et al. rhBMP-12 accelerates healing of rotator cuff repairs in a sheep model. J Bone Joint Surg Am. 2008;90(10):2206–19.

    Article  PubMed  Google Scholar 

  56. Murray DH, Kubiak EN, Jazrawi LM, Araghi A, Kummer F, Loebenberg MI, et al. The effect of cartilage-derived morphogenetic protein 2 on initial healing of a rotator cuff defect in a rat model. J Shoulder Elbow Surg. 2007;16(2):251–4.

    Article  PubMed  Google Scholar 

  57. Takahashi S, Nakajima M, Kobayashi M, Wakabayashi I, Miyakoshi N, Hirosh M, et al. Effect of recombinant basic fibroblast growth factor (bFGF) on fibroblast-like cells from human rotator cuff tendon. Tohoku J Exp Med. 2002;198(4):207–14.

    Article  CAS  PubMed  Google Scholar 

  58. Chan BP, Fu S, Qin L, Lee K, Rolf CG, Chan K. Effects of basic fibroblast growth factor (bFGF) on early stages of tendon healing: a rat patellar tendon model. Acta Orthop Scand. 2000;71(5):513–8.

    Article  CAS  PubMed  Google Scholar 

  59. Tang JB, Cao Y, Zhu B, Xin K-Q, Wang XT, Liu PY. Adeno-associated virus-2-mediated bFGF gene transfer to digital flexor tendons significantly increases healing strength: an in vivo study. J Bone Joint Surg Am. 2008;90(5):1078–89.

    Article  PubMed  Google Scholar 

  60. Ide J, Kikukawa K, Hirose J, Iyama K, Sakamoto H, Fujimoto T, et al. The effect of a local application of fibroblast growth factor-2 on tendon-to-bone remodeling in rats with acute injury and repair of the supraspinatus tendon. J Shoulder Elbow Surg. 2009;18(3):391–8.

    Article  PubMed  Google Scholar 

  61. Ide J, Kikukawa K, Hirose J, Iyama K, Sakamoto H, Mizuta H. The effects of fibroblast growth factor-2 on rotator cuff reconstruction with acellular dermal matrix grafts. Arthroscopy. 2009;25(6):608–16.

    Article  PubMed  Google Scholar 

  62. Zumstein MA, Berger S, Schober M, Boileau P, Nyffeler RW, Horn M, et al. Leukocyte- and platelet-rich fibrin (L-PRF) for long-term delivery of growth factor in rotator cuff repair: review, preliminary results and future directions. Curr Pharm Biotechnol. 2012;13(7):1196–206.

    Article  CAS  PubMed  Google Scholar 

  63. Tian W, Schulze S, Brandl M, Winter G. Vesicular phospholipid gel-based depot formulations for pharmaceutical proteins: development and in vitro evaluation. J Control Release. 2010;142(3):319–25.

    Article  CAS  PubMed  Google Scholar 

  64. Buchmann S, Sandmann GH, Walz L, Reichel T, Beitzel K, Wexel G, et al. Growth factor release by vesicular phospholipid gels: in-vitro results and application for rotator cuff repair in a rat model. BMC Musculoskelet Disord. 2015;16(1):82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Uggen C, Dines J, McGarry M, Grande D, Lee T, Limpisvasti O. The effect of recombinant human platelet-derived growth factor BB–coated sutures on rotator cuff healing in a sheep model. Arthroscopy. 2010;26(11):1456–62.

    Article  PubMed  Google Scholar 

  66. Dines JS, Grande DA, ElAttrache N, Dines DM. Biologics in shoulder surgery: suture augmentation and coating to enhance tendon repair. Tech Orthop. 2007;22(1):20–5.

    Article  Google Scholar 

  67. Del Buono A, Oliva F, Longo UG, Rodeo SA, Orchard J, Denaro V, et al. Metalloproteases and rotator cuff disease. J Shoulder Elbow Surg. 2012;21(2):200–8.

    Article  PubMed  Google Scholar 

  68. Lo IKY, Marchuk LL, Hollinshead R, Hart DA, Frank CB. Matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase mRNA levels are specifically altered in torn rotator cuff tendons. Am J Sports Med. 2004;32(5):1223–9.

    Article  PubMed  Google Scholar 

  69. Bedi A, Kovacevic D, Hettrich C, Gulotta LV, Ehteshami JR, Warren RF, et al. The effect of matrix metalloproteinase inhibition on tendon-to-bone healing in a rotator cuff repair model. J Shoulder Elbow Surg. 2010;19(3):384–91.

    Article  PubMed  Google Scholar 

  70. Bedi A, Fox AJS, Kovacevic D, Deng X-H, Warren RF, Rodeo SA. Doxycycline-mediated inhibition of matrix metalloproteinases improves healing after rotator cuff repair. Am J Sports Med. 2010;38(2):308–17.

    Article  PubMed  Google Scholar 

  71. Ricchetti ET, Aurora A, Iannotti JP, Derwin KA. Scaffold devices for rotator cuff repair. J Shoulder Elbow Surg. 2012;21(2):251–65.

    Article  PubMed  Google Scholar 

  72. Barber FA, Burns JP, Deutsch A, Labbé MR, Litchfield RB. A prospective, randomized evaluation of acellular human dermal matrix augmentation for arthroscopic rotator cuff repair. Arthroscopy. 2012;28(1):8–15.

    Article  PubMed  Google Scholar 

  73. DeFranco MJ, Derwin K, Iannotti JP. New therapies in tendon reconstruction. J Am Acad Orthop Surg. 2004;12(5):298–304.

    Article  PubMed  Google Scholar 

  74. Aurora A, McCarron JA, van den Bogert AJ, Gatica JE, Iannotti JP, Derwin KA. The biomechanical role of scaffolds in augmented rotator cuff tendon repairs. J Shoulder Elbow Surg. 2012;21(8):1064–71.

    Article  PubMed  Google Scholar 

  75. Shea KP, Obopilwe E, Sperling JW, Iannotti JP. A biomechanical analysis of gap formation and failure mechanics of a xenograft-reinforced rotator cuff repair in a cadaveric model. J Shoulder Elbow Surg. 2012;21(8):1072–9.

    Article  PubMed  Google Scholar 

  76. Babensee JE, Anderson JM, McIntire LV, Mikos AG. Host response to tissue engineered devices. Adv Drug Deliv Rev. 1998;33(1–2):111–39.

    Article  CAS  PubMed  Google Scholar 

  77. Neviaser JS. Ruptures of the rotator cuff of the shoulder. New concepts in the diagnosis and operative treatment of chronic ruptures. Arch Surg. 1971;102(5):483–5.

    Article  CAS  PubMed  Google Scholar 

  78. Nassos JT, Chudik SC. Arthroscopic rotator cuff repair with biceps tendon augmentation. Am J Orthop (Belle Mead NJ). 2009;38(6):279–81.

    Google Scholar 

  79. Fuchs B, Weishaupt D, Zanetti M, Hodler J, Gerber C. Fatty degeneration of the muscles of the rotator cuff: assessment by computed tomography versus magnetic resonance imaging. J Shoulder Elbow Surg. 1999;8(6):599–605.

    Article  CAS  PubMed  Google Scholar 

  80. Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop. 1994;304:78–83.

    Article  Google Scholar 

  81. Mori D, Funakoshi N, Yamashita F. Arthroscopic surgery of irreparable large or massive rotator cuff tears with low-grade fatty degeneration of the infraspinatus: patch autograft procedure versus partial repair procedure. Arthroscopy. 2013;29(12):1911–21.

    Article  PubMed  Google Scholar 

  82. Bektaşer B, Oçgüder A, Solak S, Gönen E, Yalçın N, Kılıçarslan K. Free coracoacromial ligament graft for augmentation of massive rotator cuff tears treated with mini-open repair. Acta Orthop Traumatol Turc. 2010;44(6):426–30.

    Article  PubMed  Google Scholar 

  83. Mihara S, Ono T, Inoue H, Kisimoto T. A new technique for patch augmentation of rotator cuff repairs. Arthrosc Tech. 2014;3(3):e367–71.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Scheibel M, Brown A, Woertler K, Imhoff AB. Preliminary results after rotator cuff reconstruction augmented with an autologous periosteal flap. Knee Surg Sports Traumatol Arthrosc. 2007;15(3):305–14.

    Article  PubMed  Google Scholar 

  85. Barber FA, Herbert MA, Boothby MH. Ultimate tensile failure loads of a human dermal allograft rotator cuff augmentation. Arthroscopy. 2008;24(1):20–4.

    Article  PubMed  Google Scholar 

  86. Proctor CS. Long-term successful arthroscopic repair of large and massive rotator cuff tears with a functional and degradable reinforcement device. J Shoulder Elbow Surg. 2014;23(10):1508–13.

    Article  PubMed  Google Scholar 

  87. McCarron JA, Milks RA, Chen X, Iannotti JP, Derwin KA. Improved time-zero biomechanical properties using poly-L-lactic acid graft augmentation in a cadaveric rotator cuff repair model. J Shoulder Elbow Surg. 2010;19(5):688–96.

    Article  PubMed  Google Scholar 

  88. Derwin KA, Baker AR, Spragg RK, Leigh DR, Iannotti JP. Commercial extracellular matrix scaffolds for rotator cuff tendon repair: biomechanical, biochemical, and cellular properties. J Bone Joint Surg Am. 2006;88(12):2665–72.

    Article  PubMed  Google Scholar 

  89. Sclamberg SG, Tibone JE, Itamura JM, Kasraeian S. Six-month magnetic resonance imaging follow-up of large and massive rotator cuff repairs reinforced with porcine small intestinal submucosa. J Shoulder Elbow Surg. 2004;13(5):538–41.

    Article  PubMed  Google Scholar 

  90. Iannotti JP, Codsi MJ, Kwon YW, Derwin K, Ciccone J, Brems JJ. Porcine small intestine submucosa augmentation of surgical repair of chronic two-tendon rotator cuff tears: a randomized, controlled trial. J Bone Joint Surg Am. 2006;88(6):1238–44.

    Article  PubMed  Google Scholar 

  91. Walton JR, Bowman NK, Khatib Y, Linklater J, Murrell GAC. Restore orthobiologic implant: not recommended for augmentation of rotator cuff repairs. J Bone Joint Surg Am. 2007;89(4):786–91.

    PubMed  Google Scholar 

  92. Gilbert TW, Freund JM, Badylak SF. Quantification of DNA in biologic scaffold materials. J Surg Res. 2009;152(1):135–9.

    Article  CAS  PubMed  Google Scholar 

  93. Badhe SP, Lawrence TM, Smith FD, Lunn PG. An assessment of porcine dermal xenograft as an augmentation graft in the treatment of extensive rotator cuff tears. J Shoulder Elbow Surg. 2008;17(1 Suppl):35S–9S.

    Article  PubMed  Google Scholar 

  94. Cho C-H, Lee S-M, Lee Y-K, Shin H-K. Mini-open suture bridge repair with porcine dermal patch augmentation for massive rotator cuff tear: surgical technique and preliminary results. Clin Orthop Surg. 2014;6(3):329.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Avanzi P, Giudici LD, Capone A, Cardoni G, Lunardi G, Foti G, et al. Prospective randomized controlled trial for patch augmentation in rotator cuff repair: 24-month outcomes. J Shoulder Elbow Surg. 2019;28(10):1918–27.

    Article  PubMed  Google Scholar 

  96. O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88–95.

    Article  CAS  Google Scholar 

  97. Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater. 2009;8(6):457–70.

    Article  CAS  PubMed  Google Scholar 

  98. Atala A, Kasper FK, Mikos AG. Engineering complex tissues. Sci Transl Med. 2012;4(160):160rv12.

    Article  PubMed  CAS  Google Scholar 

  99. Gardin C, Ferroni L, Favero L, Stellini E, Stomaci D, Sivolella S, et al. Nanostructured biomaterials for tissue engineered bone tissue reconstruction. Int J Mol Sci. 2012;13(1):737–57.

    Article  PubMed  CAS  Google Scholar 

  100. McKeown AD, Beattie RF, Murrell GA, Lam PH. Biomechanical comparison of expanded polytetrafluoroethylene (ePTFE) and PTFE interpositional patches and direct tendon-to-bone repair for massive rotator cuff tears in an ovine model. Shoulder Elbow. 2016;8(1):22–31.

    Article  PubMed  Google Scholar 

  101. Ma B, Xie J, Jiang J, Shuler FD, Bartlett DE. Rational design of nanofiber scaffolds for orthopedic tissue repair and regeneration. Nanomedicine (Lond). 2013;8(9):1459–81.

    Article  CAS  Google Scholar 

  102. Ciampi P, Scotti C, Nonis A, Vitali M, Di Serio C, Peretti GM, et al. The benefit of synthetic versus biological patch augmentation in the repair of posterosuperior massive rotator cuff tears: a 3-year follow-up study. Am J Sports Med. 2014;42(5):1169–75.

    Article  PubMed  Google Scholar 

  103. Meyer F, Wardale J, Best S, Cameron R, Rushton N, Brooks R. Effects of lactic acid and glycolic acid on human osteoblasts: a way to understand PLGA involvement in PLGA/calcium phosphate composite failure. J Orthop Res. 2012;30(6):864–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Milano, G., Vaisitti, N., Frizziero, G., Saccomanno, M.F. (2022). Rationale of Tendon-to-Bone Healing. In: Huri, G., Özkan, M., Bilsel, K. (eds) Fundamentals of the Shoulder. Springer, Cham. https://doi.org/10.1007/978-3-030-94702-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94702-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74820-3

  • Online ISBN: 978-3-030-94702-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics