Skip to main content

Skeletal Muscle Protein Metabolism During Exercise

  • Chapter
  • First Online:
Exercise Metabolism

Abstract

Skeletal muscle is essential in locomotion and plays a role in whole-body metabolism, particularly during exercise. Skeletal muscle is the largest ‘reservoir’ of amino acids, which can be released for fuel and as a precursor for gluconeogenesis. During exercise, whole-body, and more specifically skeletal muscle, protein catabolism is increased, but protein synthesis is suppressed. Metabolism of skeletal muscle proteins can support energy demands during exercise, and persistent exercise (i.e. training) results in skeletal muscle protein remodelling. Exercise is generally classified as being either ‘strength’ or ‘aerobic/endurance’ in nature, and the type of exercise will reflect the phenotypic and metabolic adaptations of the muscle. In this chapter, we describe the impact of various exercise modes on protein metabolism during and following exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahtiainen JP, Hulmi JJ, Lehti M, Kraemer WJ, Nyman K, Selänne H, Alen M, Komulainen J, Kovanen V, Mero AA, Philippou A, Laakkonen EK, Häkkinen K (2016) Effects of resistance training on expression of IGF-I splice variants in younger and older men. Eur J Sport Sci 16:1055–1063

    Article  PubMed  Google Scholar 

  • Areta JL, Burke LM, Ross ML, Camera DM, West DWD, Broad EM, Jeacocke NA, Moore DR, Stellingwerff T, Phillips SM, Hawley JA, Coffey VG (2013) Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol 591:2319–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atherton PJ, Etheridge T, Watt PW, Wilkinson D, Selby A, Rankin D, Smith K, Rennie MJ (2010a) Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am J Clin Nutr 92:1080–1088

    Article  CAS  PubMed  Google Scholar 

  • Atherton PJ, Smith K, Etheridge T, Rankin D, Rennie MJ (2010b) Distinct anabolic signalling responses to amino acids in C2C12 skeletal muscle cells. Amino Acids 38:1533–1539

    Article  CAS  PubMed  Google Scholar 

  • Baar K (2014) Using molecular biology to maximize concurrent training. Sports Med 44:117–125

    Article  PubMed Central  Google Scholar 

  • Bauer J, Biolo G, Cederholm T, Cesari M, Cruz-Jentoft AJ, Morley JE, Phillips S, Sieber C, Stehle P, Teta D, Visvanathan R, Volpi E, Boirie Y (2013) Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE study group. J Am Med Dir Assoc 14:542–559

    Article  PubMed  Google Scholar 

  • Benziane B, Burton TJ, Scanlan B, Galuska D, Canny BJ, Chibalin AV, Zierath JR, Stepto NK (2008) Divergent cell signaling after short-term intensified endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab 295:E1427–E1438

    Article  CAS  PubMed  Google Scholar 

  • Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR (1995) Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Phys 268:E514–E520

    CAS  Google Scholar 

  • Biolo G, Tipton KD, Klein S, Wolfe RR (1997) An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Phys 273:E122–E129

    CAS  Google Scholar 

  • Biolo G, Fleming RYD, Maggi SP, Nguyen TT, Herndon DN, Wolfe RR (2002) Inverse regulation of protein turnover and amino acid transport in skeletal muscle of hypercatabolic patients. J Clin Endocrinol Metab 87:3378–3384

    Article  CAS  PubMed  Google Scholar 

  • Blanco G, Blanco A (2017) Medical biochemistry. Academic Press

    Google Scholar 

  • Brook MS, Wilkinson DJ, Mitchell WK, Lund JN, Szewczyk NJ, Greenhaff PL, Smith K, Atherton PJ (2015) Skeletal muscle hypertrophy adaptations predominate in the early stages of resistance exercise training, matching deuterium oxide-derived measures of muscle protein synthesis and mechanistic target of rapamycin complex 1 signaling. FASEB. J. Off. Publ. Fed. Am. Soc. Exp. Biol. 29:4485–4496

    CAS  Google Scholar 

  • Brook MS, Wilkinson DJ, Atherton PJ, Smith K (2017) Recent developments in deuterium oxide tracer approaches to measure rates of substrate turnover: implications for protein, lipid, and nucleic acid research. Curr Opin Clin Nutr Metab Care 20:375–381

    Article  CAS  PubMed  Google Scholar 

  • Brook MS, Wilkinson DJ, Smith K, Atherton PJ (2019) It’s not just about protein turnover: the role of ribosomal biogenesis and satellite cells in the regulation of skeletal muscle hypertrophy. Eur J Sport Sci 19:952–963

    Article  PubMed  Google Scholar 

  • Burd NA, West DWD, Staples AW, Atherton PJ, Baker JM, Moore DR, Holwerda AM, Parise G, Rennie MJ, Baker SK, Phillips SM (2010) Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS One 5:e12033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burd NA, McKenna CF, Salvador AF, Paulussen KJM, Moore DR (2019) Dietary protein quantity, quality, and exercise are key to healthy living: a muscle-centric perspective across the lifespan. Front Nutr 6:83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Camera DM, Edge J, Short MJ, Hawley JA, Coffey VG (2010) Early time course of Akt phosphorylation after endurance and resistance exercise. Med Sci Sports Exerc 42:1843–1852

    Article  CAS  PubMed  Google Scholar 

  • Camera DM, Smiles WJ, Hawley JA (2016) Exercise-induced skeletal muscle signaling pathways and human athletic performance. Free Radic Biol Med 98:131–143

    Article  CAS  PubMed  Google Scholar 

  • Carraro F, Stuart CA, Hartl WH, Rosenblatt J, Wolfe RR (1990) Effect of exercise and recovery on muscle protein synthesis in human subjects. Am J Phys 259:E470–E476

    CAS  Google Scholar 

  • Carrithers JA, Carroll CC, Coker RH, Sullivan DH, Trappe TA (2007) Concurrent exercise and muscle protein synthesis: implications for exercise countermeasures in space. Aviat Space Environ Med 78:457–462

    CAS  PubMed  Google Scholar 

  • Chaillou T (2019) Ribosome specialization and its potential role in the control of protein translation and skeletal muscle size. J Appl Physiol 1985 127:599–607

    CAS  PubMed  Google Scholar 

  • Churchward-Venne TA, Burd NA, Phillips SM (2012) Nutritional regulation of muscle protein synthesis with resistance exercise: strategies to enhance anabolism. Nutr Metab 9:40

    Article  CAS  Google Scholar 

  • Churchward-Venne TA, Tieland M, Verdijk LB, Leenders M, Dirks ML, de Groot LCPGM, van Loon LJC (2015) There are no nonresponders to resistance-type exercise training in older men and women. J Am Med Dir Assoc 16:400–411

    Article  PubMed  Google Scholar 

  • Churchward-Venne TA, Pinckaers PJM, Smeets JSJ, Peeters WM, Zorenc AH, Schierbeek H, Rollo I, Verdijk LB, van Loon LJC (2019) Myofibrillar and mitochondrial protein synthesis rates do not differ in Young men following the ingestion of carbohydrate with whey, soy, or leucine-enriched soy protein after concurrent resistance- and endurance-type exercise. J Nutr 149:210–220

    Article  PubMed  PubMed Central  Google Scholar 

  • Churchward-Venne TA, Pinckaers PJM, Smeets JSJ, Betz MW, Senden JM, Goessens JPB, Gijsen AP, Rollo I, Verdijk LB, van Loon LJC (2020) Dose-response effects of dietary protein on muscle protein synthesis during recovery from endurance exercise in young men: a double-blind randomized trial. Am J Clin Nutr 112:303–317

    Article  PubMed  PubMed Central  Google Scholar 

  • Coffey VG, Hawley JA (2017) Concurrent exercise training: do opposites distract? J Physiol 595:2883–2896

    Article  CAS  PubMed  Google Scholar 

  • Coffey VG, Zhong Z, Shield A, Canny BJ, Chibalin AV, Zierath JR, Hawley JA (2006) Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J 20:190–192

    Article  CAS  PubMed  Google Scholar 

  • Coffey VG, Jemiolo B, Edge J, Garnham AP, Trappe SW, Hawley JA (2009a) Effect of consecutive repeated sprint and resistance exercise bouts on acute adaptive responses in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 297:R1441–R1451

    Article  CAS  PubMed  Google Scholar 

  • Coffey VG, Pilegaard H, Garnham AP, O’Brien BJ, Hawley JA (2009b) Consecutive bouts of diverse contractile activity alter acute responses in human skeletal muscle. J. Appl. Physiol 1985 106:1187–1197

    CAS  PubMed  Google Scholar 

  • Damas F, Phillips S, Vechin FC, Ugrinowitsch C (2015) A review of resistance training-induced changes in skeletal muscle protein synthesis and their contribution to hypertrophy. Sports Med 45:801–807

    Article  PubMed  Google Scholar 

  • Damas F, Phillips SM, Lixandrão ME, Vechin FC, Libardi CA, Roschel H, Tricoli V, Ugrinowitsch C (2016a) Early resistance training-induced increases in muscle cross-sectional area are concomitant with edema-induced muscle swelling. Eur J Appl Physiol 116:49–56

    Article  PubMed  Google Scholar 

  • Damas F, Phillips SM, Lixandrão ME, Vechin FC, Libardi CA, Roschel H, Tricoli V, Ugrinowitsch C (2016b) An inability to distinguish edematous swelling from true hypertrophy still prevents a completely accurate interpretation of the time course of muscle hypertrophy. Eur J Appl Physiol 116:445–446

    Article  PubMed  Google Scholar 

  • Damas F, Angleri V, Phillips SM, Witard OC, Ugrinowitsch C, Santanielo N, Soligon SD, Costa LAR, Lixandrão ME, Conceição MS, Libardi CA (2019) Myofibrillar protein synthesis and muscle hypertrophy individualized responses to systematically changing resistance training variables in trained young men. J. Appl. Physiol 1985 127:806–815

    CAS  PubMed  Google Scholar 

  • Deutz NEP, Bauer JM, Barazzoni R, Biolo G, Boirie Y, Bosy-Westphal A, Cederholm T, Cruz-Jentoft A, Krznariç Z, Nair KS, Singer P, Teta D, Tipton K, Calder PC (2014) Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN expert group. Clin Nutr Edinb Scotl 33:929–936

    Article  CAS  Google Scholar 

  • Di Donato DM, West DWD, Churchward-Venne TA, Breen L, Baker SK, Phillips SM (2014) Influence of aerobic exercise intensity on myofibrillar and mitochondrial protein synthesis in young men during early and late postexercise recovery. Am J Physiol-Endocrinol Metab 306:E1025–E1032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donges CE, Burd NA, Duffield R, Smith GC, West DWD, Short MJ, Mackenzie R, Plank LD, Shepherd PR, Phillips SM, Edge JA (2012) Concurrent resistance and aerobic exercise stimulates both myofibrillar and mitochondrial protein synthesis in sedentary middle-aged men. J. Appl. Physiol 1985 112:1992–2001

    CAS  PubMed  Google Scholar 

  • Drummond MJ, Dreyer HC, Fry CS, Glynn EL, Rasmussen BB (2009) Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling. J Appl Physiol 1985 106:1374–1384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dudley GA, Djamil R (1985) Incompatibility of endurance- and strength-training modes of exercise. J Appl Physiol 1985 59:1446–1451

    CAS  PubMed  Google Scholar 

  • Eddens L (2019) Physiological and molecular responses to concurrent training in endurance-trained athletes [WWW Document]. undefined. URL/paper/Physiological-and-Molecular-Responses-to-Concurrent-Eddens/edffcf22ba4454ad0d4b417fa3e9c9e20ee31f33. Accessed 11.27.20

    Google Scholar 

  • Egan B, Hawley JA, Zierath JR (2016) SnapShot: exercise metabolism. Cell Metab 24:342–342.e1

    Article  CAS  PubMed  Google Scholar 

  • Felig P, Owen OE, Wahren J, Cahill GF (1969) Amino acid metabolism during prolonged starvation. J Clin Invest 48:584–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueiredo VC, McCarthy JJ (2019) Regulation of ribosome biogenesis in skeletal muscle hypertrophy. Physiol 34:30–42

    Article  CAS  Google Scholar 

  • Frontera WR, Ochala J (2015) Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 96:183–195

    Article  CAS  PubMed  Google Scholar 

  • Gibala MJ (2007) Protein metabolism and endurance exercise. Sports Med 37:337–340

    Article  PubMed  Google Scholar 

  • Goodman CA (2019) Role of mTORC1 in mechanically induced increases in translation and skeletal muscle mass. J Appl Physiol 1985 127:581–590

    CAS  PubMed  Google Scholar 

  • Goreham C, Green HJ, Ball-Burnett M, Ranney D (1999) High-resistance training and muscle metabolism during prolonged exercise. Am J Phys 276:E489–E496

    CAS  Google Scholar 

  • Greenhaff PL, Karagounis LG, Peirce N, Simpson EJ, Hazell M, Layfield R, Wackerhage H, Smith K, Atherton P, Selby A, Rennie MJ (2008) Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am J Physiol Endocrinol Metab 295:E595–E604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harber MP, Konopka AR, Jemiolo B, Trappe SW, Trappe TA, Reidy PT (2010) Muscle protein synthesis and gene expression during recovery from aerobic exercise in the fasted and fed states. Am J Physiol Regul Integr Comp Physiol 299:R1254–R1262

    Article  CAS  PubMed  Google Scholar 

  • Hawley JA (2002) Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol 29:218–222

    Article  CAS  PubMed  Google Scholar 

  • Hickson RC (1980) Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol 45:255–263

    Article  CAS  Google Scholar 

  • Hoffman NJ, Parker BL, Chaudhuri R, Fisher-Wellman KH, Kleinert M, Humphrey SJ, Yang P, Holliday M, Trefely S, Fazakerley DJ, Stöckli J, Burchfield JG, Jensen TE, Jothi R, Kiens B, Wojtaszewski JFP, Richter EA, James DE (2015) Global Phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metab 22:922–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hone M, Nugent AP, Walton J, McNulty BA, Egan B (2020) Habitual protein intake, protein distribution patterns and dietary sources in Irish adults with stratification by sex and age. J Hum Nutr Diet 33(4):465–476

    Article  CAS  PubMed  Google Scholar 

  • Howarth KR, Burgomaster KA, Phillips SM, Gibala MJ (2007) Exercise training increases branched-chain oxoacid dehydrogenase kinase content in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 293:R1335–R1341

    Article  CAS  PubMed  Google Scholar 

  • Institute of Medicine (U.S.), Institute of Medicine (U.S.) (Eds.), (2005) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. National Academies Press, Washington, D.C.

    Google Scholar 

  • Jackman ML, Gibala MJ, Hultman E, Graham TE (1997) Nutritional status affects branched-chain oxoacid dehydrogenase activity during exercise in humans. Am J Phys 272:E233–E238

    CAS  Google Scholar 

  • Jones TW, Walshe IH, Hamilton DL, Howatson G, Russell M, Price OJ, Gibson ASC, French DN (2016) Signaling responses after varying sequencing of strength and endurance training in a fed state. Int J Sports Physiol Perform 11:868–875

    Article  PubMed  Google Scholar 

  • Joyner MJ, Coyle EF (2008) Endurance exercise performance: the physiology of champions. J Physiol 586:35–44

    Article  CAS  PubMed  Google Scholar 

  • Kazior Z, Willis SJ, Moberg M, Apró W, Calbet JAL, Holmberg H-C, Blomstrand E (2016) Endurance exercise enhances the effect of strength training on muscle fiber size and protein expression of Akt and mTOR. PLoS One 11:e0149082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim PL, Staron RS, Phillips SM (2005) Fasted-state skeletal muscle protein synthesis after resistance exercise is altered with training. J Physiol 568:283–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraemer WJ, Patton JF, Gordon SE, Harman EA, Deschenes MR, Reynolds K, Newton RU, Triplett NT, Dziados JE (1995) Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol 1985 78:976–989

    CAS  PubMed  Google Scholar 

  • Lamont LS, McCullough AJ, Kalhan SC (1995) Beta-adrenergic blockade heightens the exercise-induced increase in leucine oxidation. Am J Phys 268:E910–E916

    Article  CAS  Google Scholar 

  • Lamont LS, McCullough AJ, Kalhan SC (1999) Comparison of leucine kinetics in endurance-trained and sedentary humans. J Appl Physiol 1985 86:320–325

    CAS  PubMed  Google Scholar 

  • Lantier L, Mounier R, Leclerc J, Pende M, Foretz M, Viollet B (2010) Coordinated maintenance of muscle cell size control by AMP-activated protein kinase. FASEB. J Off Publ Fed Am Soc Exp Biol 24:3555–3561

    CAS  Google Scholar 

  • Lin Y-N, Tseng T-T, Knuiman P, Chan WP, Wu S-H, Tsai C-L, Hsu C-Y (2020) Protein supplementation increases adaptations to endurance training: a systematic review and meta-analysis. Clin Nutr 40(5):3123–3132

    Article  PubMed  CAS  Google Scholar 

  • Lundberg TR, Fernandez-Gonzalo R, Gustafsson T, Tesch PA (2012) Aerobic exercise alters skeletal muscle molecular responses to resistance exercise. Med Sci Sports Exerc 44:1680–1688

    Article  CAS  PubMed  Google Scholar 

  • Lundberg TR, Fernandez-Gonzalo R, Tesch PA (2014) Exercise-induced AMPK activation does not interfere with muscle hypertrophy in response to resistance training in men. J Appl Physiol 1985 116:611–620

    PubMed  Google Scholar 

  • MacDougall JD, Gibala MJ, Tarnopolsky MA, MacDonald JR, Interisano SA, Yarasheski KE (1995) The time course for elevated muscle protein synthesis following heavy resistance exercise. Can J Appl Physiol Rev Can Physiol Appl 20:480–486

    Article  CAS  Google Scholar 

  • Mascher H, Andersson H, Nilsson P-A, Ekblom B, Blomstrand E (2007) Changes in signalling pathways regulating protein synthesis in human muscle in the recovery period after endurance exercise. Acta Physiol Oxf Engl 191:67–75

    Article  CAS  Google Scholar 

  • Mascher H, Ekblom B, Rooyackers O, Blomstrand E (2011) Enhanced rates of muscle protein synthesis and elevated mTOR signalling following endurance exercise in human subjects. Acta Physiol. Oxf. Engl. 202:175–184

    Article  CAS  Google Scholar 

  • Matheny RW, Geddis AV, Abdalla MN, Leandry LA, Ford M, McClung HL, Pasiakos SM (2018) AKT2 is the predominant AKT isoform expressed in human skeletal muscle. Physiol Rep 6:e13652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mazzulla M, Parel JT, Beals JW, Van Vliet S, Abou Sawan S, West DWD, Paluska SA, Ulanov AV, Moore DR, Burd NA (2017) Endurance exercise attenuates postprandial whole-body leucine balance in trained men. Med Sci Sports Exerc 49:2585–2592

    Article  PubMed  Google Scholar 

  • Mazzulla M, Sawan SA, Williamson E, Hannaian SJ, Volterman KA, West DWD, Moore DR (2019) Protein intake to maximize whole-body anabolism during Postexercise recovery in resistance-trained men with high habitual intakes is Severalfold greater than the current recommended dietary allowance. J Nutr 150(3):505–511

    Article  Google Scholar 

  • McGlory C, Devries MC, Phillips SM (2017) Skeletal muscle and resistance exercise training; the role of protein synthesis in recovery and remodeling. J Appl Physiol 1985 122:541–548

    CAS  PubMed  Google Scholar 

  • McKendry J, Joanisse S, Baig S, Liu B, Parise G, Greig CA, Breen L (2019) Superior aerobic capacity and indices of skeletal muscle morphology in chronically trained master endurance athletes compared with untrained older adults. J Gerontol A Biol Sci Med Sci 75(6):1079–1088

    Article  Google Scholar 

  • McKenzie S, Phillips SM, Carter SL, Lowther S, Gibala MJ, Tarnopolsky MA (2000) Endurance exercise training attenuates leucine oxidation and BCOAD activation during exercise in humans. Am J Physiol Endocrinol Metab 278:E580–E587

    Article  CAS  PubMed  Google Scholar 

  • Millward DJ (2001) Methodological considerations. Proc Nutr Soc 60:3–5

    Article  CAS  PubMed  Google Scholar 

  • Mitchell CJ, Churchward-Venne TA, Bellamy L, Parise G, Baker SK, Phillips SM (2013) Muscular and systemic correlates of resistance training-induced muscle hypertrophy. PLoS One 8:e78636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore DR (2015) Nutrition to support recovery from endurance exercise: optimal carbohydrate and protein replacement. Curr Sports Med Rep 14(4):294–300

    Article  PubMed  Google Scholar 

  • Moore DR (2019) Maximizing post-exercise anabolism: the case for relative protein intakes. Front Nutr 6:147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moore DR, Del Bel NC, Nizi KI, Hartman JW, Tang JE, Armstrong D, Phillips SM (2007) Resistance training reduces fasted- and fed-state leucine turnover and increases dietary nitrogen retention in previously untrained young men. J Nutr 137:985–991

    Article  CAS  PubMed  Google Scholar 

  • Moore DR, Robinson MJ, Fry JL, Tang JE, Glover EI, Wilkinson SB, Prior T, Tarnopolsky MA, Phillips SM (2009) Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr 89:161–168

    Article  CAS  PubMed  Google Scholar 

  • Moore DR, Camera DM, Areta JL, Hawley JA (2014) Beyond muscle hypertrophy: why dietary protein is important for endurance athletes. Appl Physiol Nutr Metab Physiol Appl Nutr Metab 39:987–997

    Article  CAS  Google Scholar 

  • Moore DR, Churchward-Venne TA, Witard O, Breen L, Burd NA, Tipton KD, Phillips SM (2015) Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J Gerontol A Biol Sci Med Sci 70:57–62

    Article  CAS  PubMed  Google Scholar 

  • Morton RW, McGlory C, Phillips SM (2015) Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Front Physiol 6:245

    Article  PubMed  PubMed Central  Google Scholar 

  • Morton RW, Oikawa SY, Wavell CG, Mazara N, McGlory C, Quadrilatero J, Baechler BL, Baker SK, Phillips SM (2016) Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol 121:129–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morton RW, Murphy KT, McKellar SR, Schoenfeld BJ, Henselmans M, Helms E, Aragon AA, Devries MC, Banfield L, Krieger JW, Phillips SM (2018) A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med 52:376–384

    Article  PubMed  Google Scholar 

  • Mounier R, Lantier L, Leclerc J, Sotiropoulos A, Foretz M, Viollet B (2011) Antagonistic control of muscle cell size by AMPK and mTORC1. Cell Cycle Georget Tex 10:2640–2646

    Article  CAS  Google Scholar 

  • Murach KA, Bagley JR (2016) Skeletal muscle hypertrophy with concurrent exercise training: contrary evidence for an interference effect. Sports Med Auckl NZ 46:1029–1039

    Article  Google Scholar 

  • Murphy CH, Shankaran M, Churchward-Venne TA, Mitchell CJ, Kolar NM, Burke LM, Hawley JA, Kassis A, Karagounis LG, Li K, King C, Hellerstein M, Phillips SM (2018) Effect of resistance training and protein intake pattern on myofibrillar protein synthesis and proteome kinetics in older men in energy restriction. J Physiol 596:2091–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newsholme P, Stenson L, Sulvucci M, Sumayao R, Krause M (2019) Amino acid metabolism, in: comprehensive biotechnology, scientific fundamentals of biotechnology. Elsevier, pp 3–14

    Google Scholar 

  • Ogasawara R, Sato K, Matsutani K, Nakazato K, Fujita S (2014) The order of concurrent endurance and resistance exercise modifies mTOR signaling and protein synthesis in rat skeletal muscle. Am J Physiol Endocrinol Metab 306:E1155–E1162

    Article  CAS  PubMed  Google Scholar 

  • Parr EB, Camera DM, Areta JL, Burke LM, Phillips SM, Hawley JA, Coffey VG (2014) Alcohol ingestion impairs maximal post-exercise rates of myofibrillar protein synthesis following a single bout of concurrent training. PLoS One 9:e88384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Papachristodoulou D, Snape A, Elliot WH, Elliot DC (2018) Biochemistry and molecular biology, 6th edn. Oxford University Press

    Google Scholar 

  • Pescatello LS, Kostek MA, Gordish-Dressman H, Thompson PD, Seip RL, Price TB, Angelopoulos TJ, Clarkson PM, Gordon PM, Moyna NM, Visich PS, Zoeller RF, Devaney JM, Hoffman EP (2006) ACE ID genotype and the muscle strength and size response to unilateral resistance training. Med Sci Sports Exerc 38:1074–1081

    Article  CAS  PubMed  Google Scholar 

  • Phillips SM, Atkinson SA, Tarnopolsky MA, MacDougall JD (1993) Gender differences in leucine kinetics and nitrogen balance in endurance athletes. J Appl Physiol 1985 75:2134–2141

    CAS  PubMed  Google Scholar 

  • Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR (1997) Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Phys 273:E99–E107

    CAS  Google Scholar 

  • Pikosky MA, Gaine PC, Martin WF, Grabarz KC, Ferrando AA, Wolfe RR, Rodriguez NR (2006) Aerobic exercise training increases skeletal muscle protein turnover in healthy adults at rest. J Nutr 136:379–383

    Article  CAS  PubMed  Google Scholar 

  • Psilander N, Damsgaard R, Pilegaard H (2003) Resistance exercise alters MRF and IGF-I mRNA content in human skeletal muscle. J Appl Physiol 1985 95:1038–1044

    CAS  PubMed  Google Scholar 

  • Rand WM, Pellett PL, Young VR (2003) Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults. Am J Clin Nutr 77:109–127

    Article  CAS  PubMed  Google Scholar 

  • Rennie MJ, Edwards RH, Krywawych S, Davies CT, Halliday D, Waterlow JC, Millward DJ (1981) Effect of exercise on protein turnover in man. Clin Sci Lond Engl 1979(61):627–639

    Article  Google Scholar 

  • Riechman SE, Balasekaran G, Roth SM, Ferrell RE (2004) Association of interleukin-15 protein and interleukin-15 receptor genetic variation with resistance exercise training responses. J Appl Physiol 1985 97:2214–2219

    CAS  PubMed  Google Scholar 

  • Sahlin K, Katz A, Broberg S (1990) Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am J Phys 259:C834–C841

    Article  CAS  Google Scholar 

  • Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168:960–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheffield-Moore M, Yeckel CW, Volpi E, Wolf SE, Morio B, Chinkes DL, Paddon-Jones D, Wolfe RR (2004) Postexercise protein metabolism in older and younger men following moderate-intensity aerobic exercise. Am J Physiol Endocrinol Metab 287:E513–E522

    Article  CAS  PubMed  Google Scholar 

  • Short KR, Vittone JL, Bigelow ML, Proctor DN, Nair KS (2004) Age and aerobic exercise training effects on whole body and muscle protein metabolism. Am J Physiol Endocrinol Metab 286:E92–E101

    Article  CAS  PubMed  Google Scholar 

  • Tang JE, Perco JG, Moore DR, Wilkinson SB, Phillips SM (2008) Resistance training alters the response of fed state mixed muscle protein synthesis in young men. Am J Physiol Regul Integr Comp Physiol 294:R172–R178

    Article  CAS  PubMed  Google Scholar 

  • Tipton KD, Ferrando AA, Williams BD, Wolfe RR (1996) Muscle protein metabolism in female swimmers after a combination of resistance and endurance exercise. J Appl Physiol 1985 81:2034–2038

    CAS  PubMed  Google Scholar 

  • van Hall G, van der Vusse GJ, Söderlund K, Wagenmakers AJ (1995) Deamination of amino acids as a source for ammonia production in human skeletal muscle during prolonged exercise. J Physiol 489:251–261

    Article  PubMed  PubMed Central  Google Scholar 

  • van Hall G, MacLean DA, Saltin B, Wagenmakers AJ (1996) Mechanisms of activation of muscle branched-chain alpha-keto acid dehydrogenase during exercise in man. J Physiol 494:899–905

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagenmakers AJ (1998a) Protein and amino acid metabolism in human muscle. Adv Exp Med Biol 441:307–319

    Article  CAS  PubMed  Google Scholar 

  • Wagenmakers AJ (1998b) Muscle amino acid metabolism at rest and during exercise: role in human physiology and metabolism. Exerc Sport Sci Rev 26:287–314

    Article  CAS  PubMed  Google Scholar 

  • Wagenmakers AJ, Coakley JH, Edwards RH (1990) Metabolism of branched-chain amino acids and ammonia during exercise: clues from McArdle's disease. Int J Sports Med 11(Suppl 2):S101–S113

    Article  PubMed  Google Scholar 

  • Wang X, Proud CG (2006) The mTOR pathway in the control of protein synthesis. Physiol 21:362–369

    Article  CAS  Google Scholar 

  • West DWD, Kujbida GW, Moore DR, Atherton P, Burd NA, Padzik JP, De Lisio M, Tang JE, Parise G, Rennie MJ, Baker SK, Phillips SM (2009) Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. J Physiol 587:5239–5247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson DJ (2018) Historical and contemporary stable isotope tracer approaches to studying mammalian protein metabolism. Mass Spectrom Rev 37:57–80

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson SB, Tarnopolsky MA, Macdonald MJ, Macdonald JR, Armstrong D, Phillips SM (2007) Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. Am J Clin Nutr 85:1031–1040

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson SB, Phillips SM, Atherton PJ, Patel R, Yarasheski KE, Tarnopolsky MA, Rennie MJ (2008) Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol 586:3701–3717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson DJ, Brook MS, Smith K, Atherton PJ (2017) Stable isotope tracers and exercise physiology: past, present and future. J Physiol 595:2873–2882

    Article  CAS  PubMed  Google Scholar 

  • Wojtaszewski JFP, Nielsen P, Hansen BF, Richter EA, Kiens B (2000) Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J Physiol 528:221–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe RR (2006) The underappreciated role of muscle in health and disease. Am J Clin Nutr 84:475–482

    Article  CAS  PubMed  Google Scholar 

  • Wolfe RR, Goodenough RD, Wolfe MH, Royle GT, Nadel ER (1982) Isotopic analysis of leucine and urea metabolism in exercising humans. J Appl Physiol 52:458–466

    Article  CAS  PubMed  Google Scholar 

  • Wolfe RR, Wolfe MH, Nadel ER, Shaw JH (1984) Isotopic determination of amino acid-urea interactions in exercise in humans. J Appl Physiol 56:221–229

    Article  CAS  PubMed  Google Scholar 

  • Yoon M-S (2017) mTOR as a key regulator in maintaining skeletal muscle mass. Front Physiol 8:788

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon M-S, Sun Y, Arauz E, Jiang Y, Chen J (2011) Phosphatidic acid activates mammalian target of rapamycin complex 1 (mTORC1) kinase by displacing FK506 binding protein 38 (FKBP38) and exerting an allosteric effect. J Biol Chem 286:29568–29574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You JS, Frey JW, Hornberger TA (2012) Mechanical stimulation induces mTOR signaling via an ERK-independent mechanism: implications for a direct activation of mTOR by phosphatidic acid. PLoS One 7:e47258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You JS, McNally RM, Jacobs BL, Privett RE, Gundermann DM, Lin KH, Steinert ND, Goodman CA, Hornberger TA (2019) The role of raptor in the mechanical load-induced regulation of mTOR signaling, protein synthesis, and skeletal muscle hypertrophy. FASEB J 33:4021–4034

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart M. Phillips .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joanisse, S., McKendry, J., Nunes, E.A., Thomas, A.C.Q., Phillips, S.M. (2022). Skeletal Muscle Protein Metabolism During Exercise. In: McConell, G. (eds) Exercise Metabolism. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-94305-9_9

Download citation

Publish with us

Policies and ethics