Skip to main content

The Effect of Training on Skeletal Muscle and Exercise Metabolism

  • Chapter
  • First Online:
Exercise Metabolism

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

This chapter reviews the molecular and metabolic responses in human skeletal muscle to exercise training. Acute changes in various stimuli that trigger adaptations largely depend on the type of exercise performed and particularly the intensity and duration of discrete sessions. These stimuli are linked to the activation and/or repression of an array of intracellular signal transduction pathways, pre- and posttranscriptional processes, and the regulation of protein translation. Given the considerable overlap in these underlying molecular processes, the mechanistic basis for how repeated, acute changes are translated into specific training responses remains a topic of much investigation. Endurance training is primarily associated with an enhanced capacity for oxidative energy provision and a shift in substrate utilization, from carbohydrate to lipid, at a given absolute exercise intensity. Strength training mainly results in increased muscle size, force-generating capacity, and enhanced capacity for non-oxidative energy provision. Sprint training also increases the capacity for non-oxidative energy provision, but can elicit a range of responses, including some that resemble endurance or strength training. Training generally enhances fatigue resistance and performance in a manner that is specific, but not exclusive, to the type of exercise performed. These improvements are owed, in part to training-induced changes in both the maximal capacity for, and the specific utilization of, various substrates during exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abernethy PJ, Jürimäe J, Logan PA, Taylor AW, Thayer RE (1994) Acute and chronic response of skeletal muscle to resistance exercise. Sports Med 17(1):22–38

    Article  CAS  PubMed  Google Scholar 

  • Ansdell P, Thomas K, Hicks KM, Hunter SK, Howatson G, Goodall S (2020) Physiological sex differences affect the integrative response to exercise: acute and chronic implications. Exp Physiol 105(12):2007–2021

    Article  PubMed  Google Scholar 

  • Baar K (2009) The signaling underlying FITness. Appl Physiol Nutr Metab 34(3):411–419

    Article  CAS  PubMed  Google Scholar 

  • Ball-Burnett M, Green HJ, Houston ME (1991) Energy metabolism in human slow and fast twitch fibres during prolonged cycle exercise. J Physiol 437:257–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barres R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T, Caidahl K, Krook A, O'Gorman DJ, Zierath JR (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15(3):405–411

    Article  CAS  PubMed  Google Scholar 

  • Benziane B, Burton TJ, Scanlan B, Galuska D, Canny BJ, Chibalin AV, Zierath JR, Stepto NK (2008) Divergent cell signaling after short-term intensified endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab 295(6):E1427–E1438

    Article  CAS  PubMed  Google Scholar 

  • Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, Pypaert M, Young LH, Semenkovich CF, Shulman GI (2001) Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab 281(6):E1340–E1346

    Article  CAS  PubMed  Google Scholar 

  • Bergman BC, Butterfield GE, Wolfel EE, Casazza GA, Lopaschuk GD, Brooks GA (1999a) Evaluation of exercise and training on muscle lipid metabolism. Am J Phys 276(1):E106–E117

    CAS  Google Scholar 

  • Bergman BC, Wolfel EE, Butterfield GE, Lopaschuk GD, Casazza GA, Horning MA, Brooks GA (1999b) Active muscle and whole body lactate kinetics after endurance training in men. J Appl Physiol (1985) 87(5):1684–1696

    Article  CAS  Google Scholar 

  • Bickel CS, Slade J, Mahoney E, Haddad F, Dudley GA, Adams GR (2005) Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise. J Appl Physiol (1985) 98(2):482–488

    Article  CAS  Google Scholar 

  • Bishop D, Girard O, Mendez-Villanueva A (2011) Repeated-sprint ability–part II: recommendations for training. Sports Med 41(9):741–756

    Article  PubMed  Google Scholar 

  • Black MI, Jones AM, Blackwell JR, Bailey SJ, Wylie LJ, McDonagh ST, Thompson C, Kelly J, Sumners P, Mileva KN, Bowtell JL, Vanhatalo A (2017) Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains. J Appl Physiol (1985) 122(3):446–459

    Article  CAS  Google Scholar 

  • Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK (1996) Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol (1985) 80(3):876–884

    Article  CAS  Google Scholar 

  • Booth FW, Thomason DB (1991) Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models. Physiol Rev 71(2):541–585

    Article  CAS  PubMed  Google Scholar 

  • Brook MS, Wilkinson DJ, Mitchell WK, Lund JN, Szewczyk NJ, Greenhaff PL, Smith K, Atherton PJ (2015) Skeletal muscle hypertrophy adaptations predominate in the early stages of resistance exercise training, matching deuterium oxide-derived measures of muscle protein synthesis and mechanistic target of rapamycin complex 1 signaling. FASEB J 29(11):4485–4496

    Article  CAS  PubMed  Google Scholar 

  • Brook MS, Wilkinson DJ, Smith K, Atherton PJ (2019) It’s not just about protein turnover: the role of ribosomal biogenesis and satellite cells in the regulation of skeletal muscle hypertrophy. Eur J Sport Sci 19(7):952–963

    Article  PubMed  Google Scholar 

  • Brooks GA (2012) Bioenergetics of exercising humans. Compr Physiol 2(1):537–562

    Article  PubMed  Google Scholar 

  • Brooks GA (2018) The science and translation of lactate shuttle theory. Cell Metab 27(4):757–785

    Article  CAS  PubMed  Google Scholar 

  • Burgomaster KA, Heigenhauser GJ, Gibala MJ (2006) Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. J Appl Physiol (1985) 100(6):2041–2047

    Article  Google Scholar 

  • Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ (2008) Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 586(1):151–160

    Article  CAS  PubMed  Google Scholar 

  • Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ (2005) Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol (1985) 98(6):1985–1990

    Article  Google Scholar 

  • Burniston JG, Towler M, Wackerhage H (2014) Signal transduction and adaptation to exercise: background and methods. In: Wackerhage H (ed) Molecular exercise physiology: an introduction, 1st edn. Routledge, Oxon, UK, pp 52–78

    Google Scholar 

  • Callahan MJ, Parr EB, Hawley JA, Camera DM (2021) Can high-intensity interval training promote skeletal muscle anabolism? Sports Med 51(3):405–421

    Article  PubMed  Google Scholar 

  • Chesley A, Heigenhauser GJ, Spriet LL (1996) Regulation of muscle glycogen phosphorylase activity following short-term endurance training. Am J Phys 270(2 Pt 1):E328–E335

    CAS  Google Scholar 

  • Coffey VG, Hawley JA (2017) Concurrent exercise training: do opposites distract? J Physiol 595(9):2883–2896

    Article  CAS  PubMed  Google Scholar 

  • Coffey VG, Zhong Z, Shield A, Canny BJ, Chibalin AV, Zierath JR, Hawley JA (2006) Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J 20(1):190–192

    Article  CAS  PubMed  Google Scholar 

  • Coggan AR, Kohrt WM, Spina RJ, Bier DM, Holloszy JO (1990) Endurance training decreases plasma glucose turnover and oxidation during moderate-intensity exercise in men. J Appl Physiol (1985) 68(3):990–996

    Article  CAS  Google Scholar 

  • Constantin-Teodosiu D, Carlin JI, Cederblad G, Harris RC, Hultman E (1991) Acetyl group accumulation and pyruvate dehydrogenase activity in human muscle during incremental exercise. Acta Physiol Scand 143(4):367–372

    Article  CAS  PubMed  Google Scholar 

  • Egan B, Zierath JR (2013) Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 17(2):162–184

    Article  CAS  PubMed  Google Scholar 

  • Esbjörnsson M, Rundqvist HC, Mascher H, Österlund T, Rooyackers O, Blomstrand E, Jansson E (2012) Sprint exercise enhances skeletal muscle p70S6k phosphorylation and more so in women than in men. Acta Physiol (Oxf) 205(3):411–422

    Article  Google Scholar 

  • Essen-Gustavsson B, Tesch PA (1990) Glycogen and triglyceride utilization in relation to muscle metabolic characteristics in men performing heavy-resistance exercise. Eur J Appl Physiol Occup Physiol 61(1–2):5–10

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo VC (2019) Revisiting the roles of protein synthesis during skeletal muscle hypertrophy induced by exercise. Am J Physiol Regul Integr Comp Physiol 317(5):R709–r718

    Article  CAS  PubMed  Google Scholar 

  • Forbes SC, Slade JM, Meyer RA (2008) Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans. Appl Physiol Nutr Metab 33(6):1124–1131

    Article  CAS  PubMed  Google Scholar 

  • Friedlander AL, Casazza GA, Horning MA, Buddinger TF, Brooks GA (1998) Effects of exercise intensity and training on lipid metabolism in young women. Am J Phys 275(5):E853–E863

    CAS  Google Scholar 

  • Garcia-Roves PM, Osler ME, Holmstrom MH, Zierath JR (2008) Gain-of-function R225Q mutation in AMP-activated protein kinase {gamma}3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle. J Biol Chem 283(51):35724–35734

    Article  CAS  PubMed  Google Scholar 

  • Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, Raha S, Tarnopolsky MA (2006) Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol 575(Pt 3):901–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, Hargreaves M (2009) Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle. J Appl Physiol (1985) 106(3):929–934

    Article  CAS  Google Scholar 

  • Goreham C, Green HJ, Ball-Burnett M, Ranney D (1999) High-resistance training and muscle metabolism during prolonged exercise. Am J Phys 276(3):E489–E496

    CAS  Google Scholar 

  • Granata C, Jamnick NA, Bishop DJ (2018) Principles of exercise prescription, and how they influence exercise-induced changes of transcription factors and other regulators of mitochondrial biogenesis. Sports Med 48(7):1541–1559

    Article  PubMed  Google Scholar 

  • Granata C, Oliveira RS, Little JP, Renner K, Bishop DJ (2017) Sprint-interval but not continuous exercise increases PGC-1α protein content and p53 phosphorylation in nuclear fractions of human skeletal muscle. Sci Rep 7:44227

    Article  PubMed  PubMed Central  Google Scholar 

  • Green H, Goreham C, Ouyang J, Ball-Burnett M, Ranney D (1999) Regulation of fiber size, oxidative potential, and capillarization in human muscle by resistance exercise. Am J Phys 276(2):R591–R596

    CAS  Google Scholar 

  • Green HJ, Jones S, Ball-Burnett M, Farrance B, Ranney D (1995) Adaptations in muscle metabolism to prolonged voluntary exercise and training. J Appl Physiol (1985) 78(1):138–145

    Article  CAS  Google Scholar 

  • Green HJ, Jones S, Ball-Burnett ME, Smith D, Livesey J, Farrance BW (1991) Early muscular and metabolic adaptations to prolonged exercise training in humans. J Appl Physiol (1985) 70(5):2032–2038

    Article  CAS  Google Scholar 

  • Greenhaff PL, Nevill ME, Soderlund K, Bodin K, Boobis LH, Williams C, Hultman E (1994) The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting. J Physiol 478(Pt 1):149–155

    Article  PubMed  PubMed Central  Google Scholar 

  • Greiwe JS, Hickner RC, Hansen PA, Racette SB, Chen MM, Holloszy JO (1999) Effects of endurance exercise training on muscle glycogen accumulation in humans. J Appl Physiol (1985) 87(1):222–226

    Article  CAS  Google Scholar 

  • Guezennec Y, Leger L, Lhoste F, Aymonod M, Pesquies PC (1986) Hormone and metabolite response to weight-lifting training sessions. Int J Sports Med 7(2):100–105

    Article  CAS  PubMed  Google Scholar 

  • Hackett DA, Johnson NA, Chow CM (2013) Training practices and ergogenic aids used by male bodybuilders. J Strength Cond Res 27(6):1609–1617

    Article  PubMed  Google Scholar 

  • Hargreaves M, Spriet LL (2020) Skeletal muscle energy metabolism during exercise. Nat Metab 2(9):817–828

    Article  CAS  PubMed  Google Scholar 

  • Hawley JA, Burke LM, Phillips SM, Spriet LL (2011) Nutritional modulation of training-induced skeletal muscle adaptations. J Appl Physiol (1985) 110(3):834–845

    Article  CAS  Google Scholar 

  • Hawley JA, Hargreaves M, Joyner MJ, Zierath JR (2014) Integrative biology of exercise. Cell 159(4):738–749

    Article  CAS  PubMed  Google Scholar 

  • Henriksson J (1977) Training induced adaptation of skeletal muscle and metabolism during submaximal exercise. J Physiol 270(3):661–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hokken R, Laugesen S, Aagaard P, Suetta C, Frandsen U, Ørtenblad N, Nielsen J (2020) Subcellular localization- and fibre type-dependent utilization of muscle glycogen during heavy resistance exercise in elite power and Olympic weightlifters. Acta Physiol (Oxf) e13561

    Google Scholar 

  • Holloszy JO, Coyle EF (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Respir Environ Exerc Physiol 56(4):831–838

    CAS  PubMed  Google Scholar 

  • Hood DA, Tryon LD, Carter HN, Kim Y, Chen CC (2016) Unravelling the mechanisms regulating muscle mitochondrial biogenesis. Biochem J 473(15):2295–2314

    Article  CAS  PubMed  Google Scholar 

  • Hoppeler H, Baum O, Lurman G, Mueller M (2011) Molecular mechanisms of muscle plasticity with exercise. Compr Physiol 1(3):1383–1412

    Article  PubMed  Google Scholar 

  • Hostrup M, Bangsbo J (2017) Limitations in intense exercise performance of athletes–effect of speed endurance training on ion handling and fatigue development. J Physiol 595(9):2897–2913

    Article  CAS  PubMed  Google Scholar 

  • Houmard JA, Shinebarger MH, Dolan PL, Leggett-Frazier N, Bruner RK, McCammon MR, Israel RG, Dohm GL (1993) Exercise training increases GLUT-4 protein concentration in previously sedentary middle-aged men. Am J Phys 264(6 Pt 1):E896–E901

    CAS  Google Scholar 

  • Howlett RA, Parolin ML, Dyck DJ, Hultman E, Jones NL, Heigenhauser GJ, Spriet LL (1998) Regulation of skeletal muscle glycogen phosphorylase and PDH at varying exercise power outputs. Am J Phys 275(2):R418–R425

    CAS  Google Scholar 

  • Hultman E, Greenhaff PL, Ren JM, Söderlund K (1991) Energy metabolism and fatigue during intense muscle contraction. Biochem Soc Trans 19(2):347–353

    Article  CAS  PubMed  Google Scholar 

  • Hurley BF, Nemeth PM, Martin WH 3rd, Hagberg JM, Dalsky GP, Holloszy JO (1986) Muscle triglyceride utilization during exercise: effect of training. J Appl Physiol (1985) 60(2):562–567

    Article  CAS  Google Scholar 

  • Islam H, Edgett BA, Gurd BJ (2018) Coordination of mitochondrial biogenesis by PGC-1α in human skeletal muscle: a re-evaluation. Metabolism 79:42–51

    Article  CAS  PubMed  Google Scholar 

  • Jacobs I, Esbjörnsson M, Sylvén C, Holm I, Jansson E (1987) Sprint training effects on muscle myoglobin, enzymes, fiber types, and blood lactate. Med Sci Sports Exerc 19(4):368–374

    Article  CAS  PubMed  Google Scholar 

  • Juel C (2006) Training-induced changes in membrane transport proteins of human skeletal muscle. Eur J Appl Physiol (1985) 96(6):627–635

    Article  Google Scholar 

  • Karlsson J, Nordesjö LO, Jorfeldt L, Saltin B (1972) Muscle lactate, ATP, and CP levels during exercise after physical training in man. J Appl Physiol (1985) 33(2):199–203

    Article  CAS  Google Scholar 

  • Kiens B, Essen-Gustavsson B, Christensen NJ, Saltin B (1993) Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training. J Physiol 469:459–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiens B, Kristiansen S, Jensen P, Richter EA, Turcotte LP (1997) Membrane associated fatty acid binding protein (FABPpm) in human skeletal muscle is increased by endurance training. Biochem Biophys Res Commun 231(2):463–465

    Article  CAS  PubMed  Google Scholar 

  • Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmøller C, Shum M, Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L (2018) AMPK in skeletal muscle function and metabolism. FASEB J 32(4):1741–1777

    Article  PubMed  PubMed Central  Google Scholar 

  • Koopman R, Manders RJ, Jonkers RA, Hul GB, Kuipers H, van Loon LJ (2006) Intramyocellular lipid and glycogen content are reduced following resistance exercise in untrained healthy males. Eur J Appl Physiol 96(5):525–534

    Article  CAS  PubMed  Google Scholar 

  • Kristiansen S, Gade J, Wojtaszewski JF, Kiens B, Richter EA (2000) Glucose uptake is increased in trained vs. untrained muscle during heavy exercise. J Appl Physiol (1985) 89(3):1151–1158

    Article  CAS  Google Scholar 

  • Leblanc PJ, Howarth KR, Gibala MJ, Heigenhauser GJ (2004) Effects of 7 wk of endurance training on human skeletal muscle metabolism during submaximal exercise. J Appl Physiol (1985) 97(6):2148–2153

    Article  CAS  Google Scholar 

  • Leick L, Wojtaszewski JF, Johansen ST, Kiilerich K, Comes G, Hellsten Y, Hidalgo J, Pilegaard H (2008) PGC-1alpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle. Am J Physiol Endocrinol Metab 294(2):E463–E474

    Article  CAS  PubMed  Google Scholar 

  • Little JP, Safdar A, Bishop D, Tarnopolsky MA, Gibala MJ (2011) An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1α and activates mitochondrial biogenesis in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 300(6):R1303–R1310

    Article  CAS  PubMed  Google Scholar 

  • Little JP, Safdar A, Cermak N, Tarnopolsky MA, Gibala MJ (2010) Acute endurance exercise increases the nuclear abundance of PGC-1alpha in trained human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 298(4):R912–R917

    Article  CAS  PubMed  Google Scholar 

  • Lundby C, Jacobs RA (2016) Adaptations of skeletal muscle mitochondria to exercise training. Exp Physiol 101(1):17–22

    Article  CAS  PubMed  Google Scholar 

  • Lundsgaard AM, Fritzen AM, Kiens B (2018) Molecular regulation of fatty acid oxidation in skeletal muscle during aerobic exercise. Trends Endocrinol Metab 29(1):18–30

    Article  CAS  PubMed  Google Scholar 

  • MacDougall JD, Hicks AL, MacDonald JR, McKelvie RS, Green HJ, Smith KM (1998) Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol (1985) 84(6):2138–2142

    Article  CAS  Google Scholar 

  • MacDougall JD, Ray S, Sale DG, McCartney N, Lee P, Garner S (1999) Muscle substrate utilization and lactate production. Can J Appl Physiol 24(3):209–215

    Article  CAS  PubMed  Google Scholar 

  • MacDougall JD, Sale DG, Moroz JR, Elder GC, Sutton JR, Howald H (1979) Mitochondrial volume density in human skeletal muscle following heavy resistance training. Med Sci Sports 11(2):164–166

    CAS  PubMed  Google Scholar 

  • MacDougall JD, Ward GR, Sale DG, Sutton JR (1977) Biochemical adaptation of human skeletal muscle to heavy resistance training and immobilization. J Appl Physiol Respir Environ Exerc Physiol 43(4):700–703

    CAS  PubMed  Google Scholar 

  • MacInnis MJ, Gibala MJ (2017) Physiological adaptations to interval training and the role of exercise intensity. J Physiol 595(9):2915–2930

    Article  CAS  PubMed  Google Scholar 

  • Mallinson JE, Taylor T, Constantin-Teodosiu D, Billeter-Clark R, Constantin D, Franchi MV, Narici MV, Auer D, Greenhaff PL (2020) Longitudinal hypertrophic and transcriptional responses to high-load eccentric-concentric vs concentric training in males. Scand J Med Sci Sports 30(11):2101–2115

    Article  PubMed  Google Scholar 

  • Martin WH 3rd, Dalsky GP, Hurley BF, Matthews DE, Bier DM, Hagberg JM, Rogers MA, King DS, Holloszy JO (1993) Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. Am J Phys 265(5 Pt 1):E708–E714

    CAS  Google Scholar 

  • Martínez-Redondo V, Pettersson AT, Ruas JL (2015) The hitchhiker’s guide to PGC-1α isoform structure and biological functions. Diabetologia 58(9):1969–1977

    Article  PubMed  CAS  Google Scholar 

  • Massart J, Katayama M, Krook A (2016) microManaging glucose and lipid metabolism in skeletal muscle: role of microRNAs. Biochim Biophys Acta 1861(12 Pt B):2130–2138

    Article  CAS  PubMed  Google Scholar 

  • McConell GK, Wadley GD, Le Plastrier K, Linden KC (2020) Skeletal muscle AMPK is not activated during 2 h of moderate intensity exercise at ∼65% V̇O2peak in endurance trained men. J Physiol 598(18):3859–3870

    Article  CAS  PubMed  Google Scholar 

  • McGee SL, Fairlie E, Garnham AP, Hargreaves M (2009) Exercise-induced histone modifications in human skeletal muscle. J Physiol 587(Pt 24):5951–5958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGee SL, Hargreaves M (2004) Exercise and myocyte enhancer factor 2 regulation in human skeletal muscle. Diabetes 53(5):1208–1214

    Article  CAS  PubMed  Google Scholar 

  • McGee SL, Hargreaves M (2020) Exercise adaptations: molecular mechanisms and potential targets for therapeutic benefit. Nat Rev Endocrinol 16(9):495–505

    Article  CAS  PubMed  Google Scholar 

  • McGlory C, Devries MC, Phillips SM (2017) Skeletal muscle and resistance exercise training; the role of protein synthesis in recovery and remodeling. J Appl Physiol (1985) 122(3):541–548

    Article  CAS  Google Scholar 

  • McKenna MJ, Schmidt TA, Hargreaves M, Cameron L, Skinner SL, Kjeldsen K (1993) Sprint training increases human skeletal muscle Na(+)-K(+)-ATPase concentration and improves K+ regulation. J Appl Physiol (1985) 75(1):173–180

    Article  CAS  Google Scholar 

  • McKenzie S, Phillips SM, Carter SL, Lowther S, Gibala MJ, Tarnopolsky MA (2000) Endurance exercise training attenuates leucine oxidation and BCOAD activation during exercise in humans. Am J Physiol Endocrinol Metab 278(4):E580–E587

    Article  CAS  PubMed  Google Scholar 

  • Messonnier LA, Emhoff CA, Fattor JA, Horning MA, Carlson TJ, Brooks GA (2013) Lactate kinetics at the lactate threshold in trained and untrained men. J Appl Physiol (1985) 114(11):1593–1602

    Article  CAS  Google Scholar 

  • Nevill ME, Boobis LH, Brooks S, Williams C (1989) Effect of training on muscle metabolism during treadmill sprinting. J Appl Physiol (1985) 67(6):2376–2382

    Article  CAS  Google Scholar 

  • Ogasawara R, Jensen TE, Goodman CA, Hornberger TA (2019) Resistance exercise-induced hypertrophy: a potential role for rapamycin-insensitive mTOR. Exerc Sport Sci Rev 47(3):188–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Paganini AT, Foley JM, Meyer RA (1997) Linear dependence of muscle phosphocreatine kinetics on oxidative capacity. Am J Phys 272(2 Pt 1):C501–C510

    Article  CAS  Google Scholar 

  • Parolin ML, Chesley A, Matsos MP, Spriet LL, Jones NL, Heigenhauser GJ (1999) Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Phys 277(5):E890–E900

    CAS  Google Scholar 

  • Perry CG, Lally J, Holloway GP, Heigenhauser GJ, Bonen A, Spriet LL (2010) Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol 588(Pt 23):4795–4810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrakos G, Morin JB, Egan B (2016) Resisted sled Sprint training to improve Sprint performance: a systematic review. Sports Med 46(3):381–400

    Article  PubMed  Google Scholar 

  • Petrella JK, Kim JS, Cross JM, Kosek DJ, Bamman MM (2006) Efficacy of myonuclear addition may explain differential myofiber growth among resistance-trained young and older men and women. Am J Physiol Endocrinol Metab 291(5):E937–E946

    Article  CAS  PubMed  Google Scholar 

  • Petrella JK, Kim JS, Mayhew DL, Cross JM, Bamman MM (2008) Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. J Appl Physiol (1985) 104(6):1736–1742

    Article  Google Scholar 

  • Phillips SM, Green HJ, MacDonald MJ, Hughson RL (1995) Progressive effect of endurance training on VO2 kinetics at the onset of submaximal exercise. J Appl Physiol (1985) 79(6):1914–1920

    Article  CAS  Google Scholar 

  • Phillips SM, Green HJ, Tarnopolsky MA, Heigenhauser GF, Hill RE, Grant SM (1996) Effects of training duration on substrate turnover and oxidation during exercise. J Appl Physiol (1985) 81(5):2182–2191

    Article  CAS  Google Scholar 

  • Pillon NJ, Gabriel BM, Dollet L, Smith JAB, Sardón Puig L, Botella J, Bishop DJ, Krook A, Zierath JR (2020) Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity. Nat Commun 11(1):470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole DC, Jones AM (2012) Oxygen uptake kinetics. Compr Physiol 2(2):933–996

    Article  PubMed  Google Scholar 

  • Richter EA, Jensen P, Kiens B, Kristiansen S (1998) Sarcolemmal glucose transport and GLUT-4 translocation during exercise are diminished by endurance training. Am J Phys 274(1):E89–E95

    CAS  Google Scholar 

  • Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Phys 265(3 Pt 1):E380–E391

    CAS  Google Scholar 

  • Ross A, Leveritt M (2001) Long-term metabolic and skeletal muscle adaptations to short-sprint training: implications for sprint training and tapering. Sports Med 31(15):1063–1082

    Article  CAS  PubMed  Google Scholar 

  • Ross A, Leveritt M, Riek S (2001) Neural influences on sprint running: training adaptations and acute responses. Sports Med 31(6):409–425

    Article  CAS  PubMed  Google Scholar 

  • Rowe GC, El-Khoury R, Patten IS, Rustin P, Arany Z (2012) PGC-1alpha is dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle. PLoS One 7(7):e41817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rumpf MC, Lockie RG, Cronin JB, Jalilvand F (2016) Effect of different Sprint training methods on Sprint performance over various distances: a brief review. J Strength Cond Res 30(6):1767–1785

    Article  PubMed  Google Scholar 

  • Rundqvist HC, Montelius A, Osterlund T, Norman B, Esbjornsson M, Jansson E (2019) Acute sprint exercise transcriptome in human skeletal muscle. PLoS One 14(10):e0223024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahlin K, Broberg S, Ren JM (1989) Formation of inosine monophosphate (IMP) in human skeletal muscle during incremental dynamic exercise. Acta Physiol Scand 136(2):193–198

    Article  CAS  PubMed  Google Scholar 

  • Sahlin K, Katz A, Henriksson J (1987) Redox state and lactate accumulation in human skeletal muscle during dynamic exercise. Biochem J 245(2):551–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sale DG (1988) Neural adaptation to resistance training. Med Sci Sports Exerc 20(5 Suppl):S135–S145

    Article  CAS  PubMed  Google Scholar 

  • Saltin B, Gollnick PD (1983) Skeletal muscle adaptability: significance for metabolism and performance. In: Peachy LD, Adrian RH, Geiger SR (eds) Handbook of physiology, section 10: skeletal muscle. American Physiological Society, Bethesda, MD, pp 555–631

    Google Scholar 

  • Saltin B, Nazar K, Costill DL, Stein E, Jansson E, Essén B, Gollnick D (1976) The nature of the training response; peripheral and central adaptations of one-legged exercise. Acta Physiol Scand 96(3):289–305

    Article  CAS  PubMed  Google Scholar 

  • Sandri M (2008) Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda) 23:160–170

    CAS  Google Scholar 

  • Seaborne RA, Sharples AP (2020) The interplay between exercise metabolism, epigenetics, and skeletal muscle remodeling. Exerc Sport Sci Rev 48(4):188–200

    Article  PubMed  Google Scholar 

  • Seiler S (2010) What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform 5(3):276–291

    Article  PubMed  Google Scholar 

  • Shaw CS, Swinton C, Morales-Scholz MG, McRae N, Erftemeyer T, Aldous A, Murphy RM, Howlett KF (2020) Impact of exercise training status on the fiber type-specific abundance of proteins regulating intramuscular lipid metabolism. J Appl Physiol (1985) 128(2):379–389

    Article  CAS  Google Scholar 

  • Shepherd SO, Cocks M, Tipton KD, Ranasinghe AM, Barker TA, Burniston JG, Wagenmakers AJ, Shaw CS (2013) Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5. J Physiol 591(3):657–675

    Article  CAS  PubMed  Google Scholar 

  • Skelly LE, Gillen JB, MacInnis MJ, Martin BJ, Safdar A, Akhtar M, MacDonald MJ, Tarnopolsky MA, Gibala MJ (2017) Effect of sex on the acute skeletal muscle response to sprint interval exercise. Exp Physiol 102(3):354–365

    Article  CAS  PubMed  Google Scholar 

  • Spriet LL (2014) New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports Med 44(Suppl 1):S87–S96

    Article  PubMed  Google Scholar 

  • Starritt EC, Howlett RA, Heigenhauser GJ, Spriet LL (2000) Sensitivity of CPT I to malonyl-CoA in trained and untrained human skeletal muscle. Am J Physiol Endocrinol Metab 278(3):E462–E468

    Article  CAS  PubMed  Google Scholar 

  • Stec MJ, Kelly NA, Many GM, Windham ST, Tuggle SC, Bamman MM (2016) Ribosome biogenesis may augment resistance training-induced myofiber hypertrophy and is required for myotube growth in vitro. Am J Physiol Endocrinol Metab 310(8):E652–e661

    Article  PubMed  PubMed Central  Google Scholar 

  • Tesch PA (1988) Skeletal muscle adaptations consequent to long-term heavy resistance exercise. Med Sci Sports Exerc 20(5 Suppl):S132–S134

    Article  CAS  PubMed  Google Scholar 

  • Tesch PA, Komi PV, Häkkinen K (1987) Enzymatic adaptations consequent to long-term strength training. Int J Sports Med 8(Suppl 1):66–69

    Article  CAS  PubMed  Google Scholar 

  • van Loon LJ, Goodpaster BH (2006) Increased intramuscular lipid storage in the insulin-resistant and endurance-trained state. Pflugers Arch 451(5):606–616

    Article  CAS  PubMed  Google Scholar 

  • van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ (2001) The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol 536(Pt 1):295–304

    Article  PubMed  PubMed Central  Google Scholar 

  • Watt MJ, Cheng Y (2017) Triglyceride metabolism in exercising muscle. Biochim Biophys Acta Mol Cell Biol Lipids 1862(10 Pt B):1250–1259

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the constructive comments on early versions of this chapter from Dr. Chris McGlory (Queen’s University), Dr. Donal O’Gorman and Mr. Ian Darragh (both Dublin City University), and Prof. Gianni Parise (McMaster University) as well as the insightful feedback from Prof. Paul Greenhaff (University of Nottingham) on the penultimate version of this chapter. Many of the works from Dr. MacInnis and Prof. Gibala cited herein were supported by funding from the Natural Sciences and Engineering Research Council (Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Gibala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

MacInnis, M.J., Egan, B., Gibala, M.J. (2022). The Effect of Training on Skeletal Muscle and Exercise Metabolism. In: McConell, G. (eds) Exercise Metabolism. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-94305-9_10

Download citation

Publish with us

Policies and ethics