Skip to main content

Analysis of Noisy Image Lossy Compression by BPG

  • Conference paper
  • First Online:
Integrated Computer Technologies in Mechanical Engineering - 2021 (ICTM 2021)

Abstract

Acquired remote sensing images are often large and distorted by noise. On the one hand, this leads to the need to compress them. On the other hand, the presence of noise should be taken into account at the image compression stage and while evaluating the compression efficiency.

Our work investigates the noise influence on the BPG method of image compression with losses supposing that data are distorted by additive Gaussian noise of different intensity. Within the framework of this study, the PSNR metric (peak signal to noise ratio, measured in dB) was chosen as a criterion for evaluating the quality of compression.

It is shown that three typical dependences of the metric calculated between compressed and noise-free images are possible. Depending on the situation, there are different recommendations for setting a parameter that controls compression (PCC). In particular, if there is an optimal operating point (OOP), the compression should be done in its neighborhood. The examples of dependences of PSNR on PCC for several test images are given. It is shown that existence of OOP and its position depend on image complexity and noise intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lovelly, T.M., George, A.D.: Comparative analysis of present and future space-grade processors with device metrics. AIAA J. Aerospace Inf. Syst. 14(3), 184–197 (2017)

    Google Scholar 

  2. 2015 NASA Technology Roadmaps, Washington, D.C., USA: NASA Office of the Chief Technologist (2015) [Online]. Available: https://www.nasa.gov/offices/oct/home/roadmaps/index.html

  3. George, A.D., Wilson, C.M.: Onboard processing with hybrid and reconfigurable computing on small satellites. Proc. IEEE 106(3), 458–470 (2018). https://doi.org/10.1109/JPROC.2018.2802438

    Article  Google Scholar 

  4. Beser, N.D.: Space data compression standards. John Hopkins APL Technical Digest. 15(3), 206–223 (1994)

    Google Scholar 

  5. Yu, G., Vladimirova, T., Sweeting, M.N.: Image compression systems on board satellites. Acta Astronaut. 64(9–10), 988–1005 (2009). https://doi.org/10.1016/j.actaastro.2008.12.006

    Article  Google Scholar 

  6. Fidler, A., Likar, B.: What is wrong with compression ratio in lossy image compression? Radiology 245(1), 299–300 (2007). https://doi.org/10.1148/radiol.2451062005

    Article  Google Scholar 

  7. Braunschweig, R., Kaden, I., Schwarzer, J., Sprengel, C., Klose, K.: Image data compression in diagnostic imaging: international literature review and workflow recommendation. RöFo – Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren 181(7), 629–636 (2009). https://doi.org/10.1055/s-0028-1109341

    Article  Google Scholar 

  8. Lee, J.-S., Pottier, E.: Polarimetric Radar Imaging: From Basics to Applications, p. 422. CRC Press (2009)

    Google Scholar 

  9. Marques, R., Medeiros, F., Ushizima, D.: Target detection in SAR images based on a level set approach. In: IEEE Trans. on Systems, Man and Cyber Kussul N., Lemoine G., Gallego F. J., Skakun S.V.

    Google Scholar 

  10. Kussul, N., et al.: Parcel-based crop classification in Ukraine using Landsat-8 data and Sentinel-1A data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9(6), 2500–2508 (2016). https://doi.org/10.1109/JSTARS.2016.2560141

    Article  Google Scholar 

  11. Al-Chaykh, O.K., Mersereau, R.M.: Lossy compression of noisy images. IEEE Trans. Image Process. 7(12), 1641–1652 (1998)

    Article  MathSciNet  Google Scholar 

  12. Zemliachenko, A.N., et al.: Lossy compression of hyperspectral images based on noise parameters estimation and variance stabilizing transform. J. Appl. Remote Sens. 8(1), 083571 (2014). https://doi.org/10.1117/1.JRS.8.083571

    Article  Google Scholar 

  13. Ponomarenko, N., Lukin, V., Zriakhov, M., Egiazarian, K.: Lossy compression of images with additive noise. In: Proceedings of International Conference on Advanced Concepts for Intelligent Vision Systems, Antwerpen, Belgium, pp. 381–386 (2005)

    Google Scholar 

  14. Ponomarenko, N., Krivenko, S., Lukin, V., Egiazarian, K., Astola, J.T.: Lossy compression of noisy images based on visual quality: a comprehensive study. EURASIP J. Adv. Signal Process. 1, 976436 (2010). https://doi.org/10.1155/2010/976436

    Article  Google Scholar 

  15. Uss, M.L., Vozel, B., Lukin, V.V., Chehdi, K.: Image informative maps for component-wise estimating parameters of signal-dependent noise. J. Electron. Imaging 22(1), 013019 (2013). https://doi.org/10.1117/1.JEI.22.1.013019

    Article  Google Scholar 

  16. Zemliachenko, A.N., Abramov, S.K., Lukin, V.V., Vozel, B., Chehdi, K.: Lossy compression of noisy remote sensing images with prediction of optimal operation point existence and parameters. J. Appl. Remote Sens. 9(1), 095066 (2015). https://doi.org/10.1117/1.JRS.9.095066

    Article  Google Scholar 

  17. Zemliachenko, A., Kozhemiakin, R., Vozel, B., Lukin, V.: Prediction of compression ratio in lossy compression of noisy images. In: Proceedings of TCSET 2016, Lviv-Slavske, Ukraine, pp. 693–697 (2016)

    Google Scholar 

  18. http://xooyoozoo.github.io/yolo-octo-bugfixes/#moscow&jpg=s&bpg=s

  19. https://bellard.org/bpg/

  20. Zemliachenko, A., Lukin, V., Ponomarenko, N., Egiazarian, K., Astola, J.: Still image/video frame lossy compression providing a desired visual quality. Multidimens. Syst. Signal Process. 27(3), 697–718 (2015). https://doi.org/10.1007/s11045-015-0333-8

    Article  MATH  Google Scholar 

  21. Chatterjee, P., Milanfar, P.: Is denoising dead? IEEE Trans. Image Process. 19(4), 895–911 (2010). https://doi.org/10.1109/TIP.2009.2037087

    Article  MathSciNet  MATH  Google Scholar 

  22. Ponomarenko, N., Lukin, V., Astola, J., Egiazarian, K.: Analysis of HVS-metrics’ properties using color image database TID2013. In: Battiato, S., Blanc-Talon, J., Gallo, G., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2015. LNCS, vol. 9386, pp. 613–624. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25903-1_53

    Chapter  Google Scholar 

  23. Lukin, V., Zriakhov, M., Krivenko, S., Ponomarenko, N., Miao, Z.: Lossy compression of images without visible distortions and its applications. In: CD ROM Proceedings of ICSP, Beijing, 4 p., October (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Naumenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Naumenko, V., Lukin, V., Krivenko, S. (2022). Analysis of Noisy Image Lossy Compression by BPG. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds) Integrated Computer Technologies in Mechanical Engineering - 2021. ICTM 2021. Lecture Notes in Networks and Systems, vol 367. Springer, Cham. https://doi.org/10.1007/978-3-030-94259-5_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94259-5_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94258-8

  • Online ISBN: 978-3-030-94259-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics