Skip to main content

Altitudinal Patterns and Changes in the Composition of High Mountain Plant Communities

  • Chapter
  • First Online:
The Landscape of the Sierra Nevada

Abstract

Sierra Nevada, comprising 2348 vascular flora taxa (including 95 endemic taxa) is considered one of the most important plant hotspots within the Mediterranean region. Sierra Nevada presents 362 taxa inhabiting the alpine area (ca. 242 km2), 75 endemic species (62 endemic plus 13 sub-endemic) among them, constituting ca. 79% of the endemism of the entire area. This high-mountain has preserved many species, allowing the current presence of many artic-alpine species, including twelve cold-adapted species with their southernmost limit here. There are 23 nano-hotspots, most of them occurring at the highest altitude, at the coldest parts. Altogether, they host 30% of the Baetic endemic flora in just 0.07% of the area. Plant communities are also original, and they are composed of a mixture of Alpine and Mediterranean species. Climate change is strongly impacting alpine biota leading to an adaptation to the new conditions. When this adaptation capacity is overcome species are forced to migrate to avoid extinction. Some responses are already noticeable in alpine areas, such as: phenological changes, altitudinal movements, increasing competition and hybridization, and changes in plant assemblages. Direct impact related to human activities such as livestock grazing, use of fire to manage alpine pasturelands, mountain agriculture, outdoor activities, and infrastructure construction have additive effects to climate change, and altogether they can exacerbate negative changes. Monitoring, evaluating, and understanding the effect of global change in the Mediterranean mountains is a top priority. We offer guidelines to orient the conservation agenda at Sierra Nevada: To (i) establish an early warning indicators system, (ii) preserve plant species and habitats, (iii) preserve threatened plant species ex situ, (iv) promote adaptive management measures, (v) evaluate outdoor recreation activities, and (vi) control and regulate activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott RJ (2017) Plant speciation across environmental gradients and the occurrence and nature of hybrid zones. J Syst Evol 55:238–258

    Article  Google Scholar 

  • Abeli T, Vamosi JC, Orsenigo S (2018) The importance of marginal population hotspots of cold-adapted species for research on climate change and conservation. J Biogeogr 45:977–985

    Article  Google Scholar 

  • Amano T, Smithers RJ, Sparks TH, Sutherland WJ (2010) A 250-year index of first flowering dates and its response to temperature changes. Proc R Soc Ser B Biol Sci 277:2451–2457

    Article  Google Scholar 

  • Anderson RS, Jiménez-Moreno G, Carrión JS, Pérez-Martínez C (2011) Postglacial history of alpine vegetation, fire, and climate from Laguna de Río Seco, Sierra Nevada, southern Spain. Quat Sci Rev 30:1615–1629

    Article  Google Scholar 

  • Benito B, Lorite J, Peñas J (2011) Simulating potential effects of climatic warming on altitudinal patterns of key species in Mediterranean-alpine ecosystems. Clim Change 108:471–483

    Article  Google Scholar 

  • Benito BM, Lorite J, Pérez-Pérez R et al (2014) Forecasting plant range collapse in a mediterranean hotspot: when dispersal uncertainties matter. Divers Distrib 20:72–83

    Article  Google Scholar 

  • Blanca G, Cueto M, Martínez-Lirola MJ, Molero-Mesa J (1998) Threatened vascular flora of Sierra Nevada (southern Spain). Biol Conserv 85:269–285

    Article  Google Scholar 

  • Blanca G, López-Onieva M, Lorite J et al (2001) Flora amenazada y endémica de Sierra Nevada. Universidad de Granada, Granada

    Google Scholar 

  • Boissier E (1839) Voyage botanique dans le midi de l’Espagne pendant l’année 1837. Gide et Cie Librairies-Éditeurs, Paris

    Google Scholar 

  • Brullo S, Giusso Del Galdo G, Guarino R (2001) The orophilous communities of the Pino-Juniperetea class in the Central and Eastern Mediterranean area. Feddes Repert 112:261–308

    Article  Google Scholar 

  • Cañadas EM, Fenu G, Peñas J et al (2014) Hotspots within hotspots: endemic plant richness, environmental drivers, and implications for conservation. Biol Conserv 170:282–291

    Article  Google Scholar 

  • Cano-Manuel J, Ortiz-Moreno E (2010) Inventario de acequias de Sierra Nevada. In: El agua domesticada, los paisajes de los regadíos de montaña en Andalucía. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla, pp 520–525

    Google Scholar 

  • Casagrande Bacchiocchi S, Zerbe S, Cavieres LA, Wellstein C (2019) Impact of ski piste management on mountain grassland ecosystems in the Southern Alps. Sci Total Environ 665:959–967

    Article  Google Scholar 

  • Castellon F (2008) Sierra Nevada: Un escenario natural y humano. La Alpujarra Oriental: la gran desconocida. Editorial Universidad de Almería, Almería, pp 25–38

    Google Scholar 

  • Charco J (1999) El bosque mediterráneo en el norte de África: biodiversidad y lucha contra la desertificación

    Google Scholar 

  • Cordell HK, Betz CJ, Mou SH, Gormanson DD (2012) Outdoor recreation in the Northern United States, Gen. Tech. Department of Agriculture, Forest Service, Northern Research Station, Newtown Square

    Google Scholar 

  • Davis P (1976) Land use. McGraw-Hill, New York

    Google Scholar 

  • Douglas T, Critchley D, Park G (1996) The deintensification of terraced agricultural land near Trevelez, Sierra Nevada, Spain. Glob. Ecol. Biogeogr Lett 5:258–270

    Google Scholar 

  • Dullinger S, Gattringer A, Thuiller W et al (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Change 2:619–622

    Article  Google Scholar 

  • Engler R, Randin CF, Vittoz P et al (2009) Predicting future distributions of mountain plants under climate change: does dispersal capacity matter? Ecography (cop) 32:34–45

    Article  Google Scholar 

  • Engler R, Randin CF, Thuiller W et al (2011) 21st century climate change threatens mountain flora unequally across Europe. Glob Chang Biol 17:2330–2341

    Article  Google Scholar 

  • Essl F, Staudinger M, Stöhr O et al (2009) Distribution patterns, range size and niche breadth of Austrian endemic plants. Biol Conserv 142:2547–2558

    Article  Google Scholar 

  • Fandos P, Arcinegui P, Lora MA et al (2010) Evolución demográfica de la cabra montés en Andalucía en los últimos 100 años. Galemys 22:347–358

    Google Scholar 

  • Fernández-Fernández E (2018) La trashumancia en Sierra Nevada y su patrimonio cultural inmaterial. In: Titos-Martínez M, Luque T, Navarro-Llena JM (eds) Cimas. Montañas; fuentes de vida y de futuo. Editorial Universidad de Granada, Granada, pp 321–335

    Google Scholar 

  • Fernández-Calzado MR, Molero J (2011) The cartography of vegetation in the cryoromediterranean belt of Sierra Nevada: a tool for biodiversity conservation. Lazaroa 32:101–115

    Google Scholar 

  • Fernández Calzado MR, Molero J (2013) Changes in the summit flora of a Mediterranean mountain (Sierra Nevada, Spain) as a possible effect of climate change. Lazaroa 34:65–75

    Article  Google Scholar 

  • Fernández Calzado MR, Molero Mesa J, Merzouki A, Casares Porcel M (2012) Vascular plant diversity and climate change in the upper zone of Sierra Nevada, Spain. Plant Biosyst 146:1044–1053

    Article  Google Scholar 

  • Franks SJ, Hoffmann AA (2012) Genetics of climate change adaptation. Annu Rev Genet 46:185–208

    Article  Google Scholar 

  • Gamisans J (2003) The vegetation of the Corsican high mountains. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 105–111

    Google Scholar 

  • García D, Zamora R, Hódar JA, Gómez JM (1999) Age structure of Juniperus communis L. in the Iberian peninsula: conservation of remnant populations in Mediterranean mountains. Biol Conserv 87:215–220

    Article  Google Scholar 

  • Gómez-Ortiz A (2002) Geomorphological map of Sierra Nevada; glacial a periglacial geo-morphology. Consejería de Medio Ambiente. Junta de Andalucía y Universidad de Barcelona, Sevilla

    Google Scholar 

  • Gómez-Ortiz A, Oliva M, Salvà-Catarineu M, Salvador-Franch F (2013) The environmental protection of landscapes in the high semiarid Mediterranean mountain of Sierra Nevada National Park (Spain): historical evolution and future perspectives. Appl Geogr 42:227–239

    Article  Google Scholar 

  • Gómez JM, González-Megías A, Lorite J et al (2015) The silent extinction: climate change and the potential hybridization-mediated extinction of endemic high-mountain plants. Biodivers Conserv 24:1843–1857

    Article  Google Scholar 

  • Gottfried M, Pauli H, Futschik A et al (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Change 2:111–115

    Article  Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448–448

    Article  Google Scholar 

  • Gutierrez Larena B, Fuertes Aguilar J, Nieto Feliner G (2002) Glacial-induced altitudinal migrations in Armeria (Plumbaginaceae) inferred from patterns of chloroplast DNA haplotype sharing. Mol Ecol 11:1965–1974

    Article  Google Scholar 

  • Hajar L, François L, Khater C et al (2010) Cedrus libani (A. Rich) distribution in Lebanon: past, present and future. Comptes Rendus Biol 333:622–630

    Article  Google Scholar 

  • Hammitt WE, Cole DN, Monz CA (2015) Wildland recreation: ecology and management, 3rd edn. Wiley, Ltd, Chichester

    Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61

    Article  Google Scholar 

  • Hülber K, Winkler M, Grabherr G (2010) Intraseasonal climate and habitat-specific variability controls the flowering phenology of high alpine plant species. Funct Ecol 24:245–252

    Article  Google Scholar 

  • Jansson R (2003) Global patterns in endemism explained by past climatic change. Proc R Soc London Ser B Biol Sci 270:583–590

    Article  Google Scholar 

  • Jiménez-Moreno G, García-Alix A, Hernández-Corbalán MD et al (2013) Vegetation, fire, climate and human disturbance history in the southwestern Mediterranean area during the late Holocene. Quat Res 79:110–122

    Article  Google Scholar 

  • Jiménez-Olivencia Y, Porcel-Rodríguez L, Píñar-Álvarez A (2010) Evolución Histórica de los paisajes del Parque Nacional Sierra Nevada y su entorno. In: Proyectos de Investigación en Parques Nacionales 2006–2009. Serie Investigación en la Red: Naturaleza y Parques Nacionales. Organismo Autónomo de Parques Nacionales, Madrid, pp 2006–2009

    Google Scholar 

  • Jump AS, Mátyás C, Peñuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol Evol 24:694–701

    Article  Google Scholar 

  • Kelly AE, Goulden ML (2008) Rapid shifts in plant distribution with recent climate change. Proc Natl Acad Sci 105:11823–11826

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life, 2a edn. Springer, Berlin Heidelberg, Berlin, Heidelberg

    Google Scholar 

  • Körner C (2012) Alpine treelines. Springer Basel, Basel

    Google Scholar 

  • Körner C (2021) Alpine plant life. Springer International Publishing, Cham

    Google Scholar 

  • La Sorte FA, Jetz W (2010) Projected range contractions of montane biodiversity under global warming. Proc R Soc B Biol Sci 277:3401–3410

    Article  Google Scholar 

  • Lamprecht A, Rutzinger M, Pauli H et al (2019) Disentangling anthropogenic drivers of climate change impacts on alpine plant species: Alps vs Mediterranean mountains. Vienna

    Google Scholar 

  • Lamprecht A, Pauli H, Fernández Calzado MR et al (2021) Changes in plant diversity in a water-limited and isolated high-mountain range (Sierra Nevada, Spain). Alp Bot 131:27–39

    Article  Google Scholar 

  • Larson DW, Matthes U, Kelly PE (2000) Cliff ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • le Roux PC, Virtanen R, Heikkinen RK, Luoto M (2012a) Biotic interactions affect the elevational ranges of high-latitude plant species. Ecography (cop) 35:1048–1056

    Article  Google Scholar 

  • Lenoir J, Gégout JC, Marquet P, et al (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771

    Google Scholar 

  • Levin DA, Francisco-Ortega J, Jansen RK (1996) Hybridization and the extinction of rare plant species. Conserv Biol 10:10–16

    Google Scholar 

  • Lorite J (2002) La vegetación de Sierra Nevada. In: Blanca G (ed) Flora amenazada y endémica de Sierra Nevada. Editorial Universidad de Granada, Granada, pp 23–45

    Google Scholar 

  • Lorite J (2016) An updated checklist of the vascular flora of Sierra Nevada (SE Spain). Phytotaxa 261:1–57

    Google Scholar 

  • Lorite J, Valle F, Salazar C (2003) Síntesis de la vegetación edafohigrófila del Parque Natural y Nacional de Sierra Nevada. Monogr Flora y Veg Béticas 13:47–110

    Google Scholar 

  • Lorite J, Navarro FB, Valle F et al (2007) Estimation of threatened orophytic flora and priority of its conservation in the Baetic range (S. Spain). Plant Biosyst 141:1–14

    Article  Google Scholar 

  • Lorite J, Molina-Morales M, Cañadas EM et al (2010) Evaluating a vegetation-recovery plan in Mediterranean alpine ski slopes: a chronosequence-based study in Sierra Nevada (SE Spain). Landsc Urban Plan 97:92–97

    Article  Google Scholar 

  • Lorite J, Serrano F, Cañadas EM et al (2017) Rock climbing alters plant species composition, cover, and richness in Mediterranean limestone cliffs. PLoS ONE 12:1–14

    Article  Google Scholar 

  • Lorite J, Ros-Candeira A, Alcaraz-Segura D, Salazar-Mendías C (2020) FloraSNevada: a trait database of the vascular flora of Sierra Nevada, southeast Spain. Ecology 101:ecy.03091

    Google Scholar 

  • Losa Quintana JM, Casares MMJ, M., Pérez-Raya F (1986) El paisaje vegetal de Sierra Nevada. La cuenca alta del Río Genil. Servicio de Publicaciones de la Universidad de Granada, Granada

    Google Scholar 

  • Martos-Rosillo S, Antonio G-R, Ruiz-Constán A et al (2019a) El manejo del agua en las cuencas de alta montaña del Parque Nacional de Sierra Nevada (Sur de España). Un ejemplo ancestral de Gestión Integral del Agua. BOLETÍN GEOLÓGICO Y Min 130:729–742

    Google Scholar 

  • Martos-Rosillo S, Ruiz-Constán A, González-Ramón A et al (2019) The oldest managed aquifer recharge system in Europe: new insights from the Espino recharge channel (Sierra Nevada, southern Spain). J Hydrol 578:124047

    Article  Google Scholar 

  • McNeill J (1992) The mountains of the Mediterranean world. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Médail F, Diadema K (2009) Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr 36:1333–1345

    Article  Google Scholar 

  • Medail F, Quezel P (1999) Biodiversity hotspots in the Mediterranean Basin: setting global conservation priorities. Conserv Biol 13:1510–1513

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  Google Scholar 

  • Nagy L (2006) European high mountain (alpine) vegetation and its suitability for indicating climate change impacts. Biol Environ Proc R Irish Acad 106:335–341

    Article  Google Scholar 

  • Nagy L, Grabherr G (2009) The biology of alpine habitats. Oxford University Press, Oxford

    Google Scholar 

  • Nagy L, Grabherr G, Körner C, Thompson DBA (2003) Alpine biodiversity in Europe. Springer, Berlin Heidelberg, Berlin, Heidelberg

    Book  Google Scholar 

  • Nogués-Bravo D, Araújo MB, Lasanta T et al (2008) Climate change in Mediterranean mountains during the 21st century. Ambio 37:280–285

    Article  Google Scholar 

  • Ohlemüller R, Anderson BJ, Araújo MB et al (2008) The coincidence of climatic and species rarity: high risk to small-range species from climate change. Biol Lett 4:568–572

    Article  Google Scholar 

  • Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Chang Biol 13:1860–1872

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  Google Scholar 

  • Pauli H, Gottfried M, Dullinger S et al (2012) Recent plant diversity changes on Europe’s mountain summits. Science (80–)336:353–355

    Google Scholar 

  • Pauli H, Gottfried M, Lamprecht A, et al (2015) The GLORIA field manual—standard Multi-Summit approach, supplementary methods and extra approaches, 5th edn. GLORIA-Coordination, Austrian Academy of Sciences & University of Natural Resources and Life Sciences, Vienna

    Google Scholar 

  • Peñas J, Lorite J (2019) Biología de la conservación de plantas en Sierra Nevada. Principios y retos para su preservación. Editorial Universidad de Granada, Granada

    Google Scholar 

  • Peñuelas J, Filella I (2001) Phenology: responses to a warming world. Science (80–)294:793–795

    Google Scholar 

  • Pepin N, Bradley RS, Diaz HF et al (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Change 5:424–430

    Article  Google Scholar 

  • Pérez-Luque AJ, Sánchez-Rojas CP, Zamora R et al (2015a) Dataset of phenology of Mediterranean high-mountain meadows flora (Sierra Nevada, Spain). PhytoKeys 46:89–107

    Article  Google Scholar 

  • Pérez-Luque AJ, Sánchez-Rojas CP, Zamora R, Bonet FJ (2015b) Cambios temporales en la diversidad, abundancia y fenología de las comunidades vegetales: un estudio de 25 años en los borreguiles. In: Zamora R, Pérez-Luque AJ, Bonet-García FJ et al (eds) La huella del cambio global en Sierra Nevada: Retos para la conservación. Consejería de Medio Ambiente y ordenación del Territorio, Junta de Andalucía, Sevilla, pp 126–127

    Google Scholar 

  • Pérez-Palazón M, Pimentel R, Polo M (2018) Climate trends impact on the snowfall regime in Mediterranean Mountain areas: future scenario assessment in Sierra Nevada (Spain). Water 10:720

    Article  Google Scholar 

  • Piper FI, Viñegla B, Linares JC et al (2016) Mediterranean and temperate treelines are controlled by different environmental drivers. J Ecol 104:691–702

    Article  Google Scholar 

  • Polo MJ, Herrero J, Pimentel R, Pérez-Palazón MJ (2019) The Guadalfeo Monitoring Network (Sierra Nevada, Spain): 14 years of measurements to understand the complexity of snow dynamics in semiarid regions. Earth Syst Sci Data 11:393–407

    Article  Google Scholar 

  • Primack D, Imbres C, Primack RB et al (2004) Herbarium specimens demonstrate earlier flowering times in response to warming in Boston. Am J Bot 91:1260–1264

    Article  Google Scholar 

  • Redondo JJ, Martínez-Rodríguez F (2021) Primeros datos sobre un petroglifo prehistórico de estilo atlántico hallado en Peña Madura, cuenca alta del Río Dílar, Sierra Nevada (Granada). Cuad Arte Prehistórico 11:124–160

    Google Scholar 

  • Rivas Martínez S (1961) Los pisos de la vegetación de Sierra Nevada. Boletín Real Soc Española Hist Nat Secc Biol 59:55–64

    Google Scholar 

  • Rivas-Martínez S (1987) Memoria del mapa de series de vegetación de España, Serie Técn. ICONA, Ministerio de Agricultura, Pesca y Alimentación, Madrid

    Google Scholar 

  • Rixen C, Wipf S (2017) Non-equilibrium in Alpine plant assemblages: shifts in Europe’s Summit Floras. In: Catalan J, Ninot J, Aniz M (eds) High mountain conservation in a changing world. Springer, Cham., pp 285–303

    Chapter  Google Scholar 

  • Robles AB, Ramos ME, Salazar C, González Rebollar JL (2016) Response of vegetation to exclusion and grazing in Mediterranean high-mountain wet pastures (Sierra Nevada, Granada, Spain). Options Méditerranéennes Ser A Mediterr Semin

    Google Scholar 

  • Roux-Fouillet P, Wipf S, Rixen C (2011) Long-term impacts of ski piste management on alpine vegetation and soils. J Appl Ecol 48:906–915

    Article  Google Scholar 

  • Ruiz M, Ruiz JP (1986) Ecological history of transhumance in Spain. Biol Conserv 37:73–86

    Article  Google Scholar 

  • Ruiz FA, Vázquez M, Camuñez JA et al (2020) Characterization and challenges of livestock farming in Mediterranean protected mountain areas (Sierra Nevada, Spain). Spanish J Agric Res 18:e0601

    Article  Google Scholar 

  • Ruiz Sinoga JD, Garcia Marin R, Martinez Murillo JF, Gabarron Galeote MA (2011) Precipitation dynamics in southern Spain: trends and cycles. Int J Climatol 31:2281–2289

    Article  Google Scholar 

  • Rumpf SB, Hülber K, Klonner G et al (2018) Range dynamics of mountain plants decrease with elevation. Proc Natl Acad Sci 115:1848–1853

    Article  Google Scholar 

  • Salazar C, Valle F (eds) (2004) Series de vegetación edafohigrófila de Andalucía. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla

    Google Scholar 

  • Sanders NJ, Rahbek C (2012) The patterns and causes of elevational diversity gradients. Ecography (cop) 35:1–3

    Article  Google Scholar 

  • Smith J, Sconiers W, Spasojevic M et al (2012) Phenological changes in alpine plants in response to increased snowpack, temperature, and nitrogen. Arctic Antarct Alp Res 44:135–142

    Article  Google Scholar 

  • Steinbauer MJ, Otto R, Naranjo-Cigala A et al (2012) Increase of island endemism with altitude—speciation processes on oceanic islands. Ecography (cop) 35:23–32

    Article  Google Scholar 

  • Steinbauer MJ, Grytnes J-A, Jurasinski G et al (2018) Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556:231–234

    Article  Google Scholar 

  • Steinbauer K, Lamprecht A, Semenchuk P et al (2020) Dieback and expansions: species-specific responses during 20 years of amplified warming in the high Alps. Alp Bot 130:1–11

    Article  Google Scholar 

  • Teubner IE, Haimberger L, Hantel M (2015) Estimating snow cover duration from ground temperature. J Appl Meteorol Climatol 54:959–965

    Article  Google Scholar 

  • Theurillat J, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Chang 77–109

    Google Scholar 

  • Thompson JD (2005) Plant evolution in the Mediterranean. Oxford University Press

    Book  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB et al (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250

    Article  Google Scholar 

  • Vegas-Vilarrúbia T, Nogué S, Rull V (2012) Global warming, habitat shifts and potential refugia for biodiversity conservation in the neotropical Guayana Highlands. Biol Conserv 152:159–168

    Article  Google Scholar 

  • Vitt P, Havens K, Kramer AT et al (2010) Assisted migration of plants: changes in latitudes, changes in attitudes. Biol Conserv 143:18–27

    Article  Google Scholar 

  • Vogiatzakis IN (2012) Mediterranean mountain environments. Wiley, Chichester, UK

    Google Scholar 

  • VV.AA. (2020) Memoria de actividades y resultados 2020 del Parque Nacional y Parque Natural de Sierra Nevada. Sevilla

    Google Scholar 

  • Walther G-R (2003) Plants in a warmer world. Perspect Plant Ecol Evol Syst 6:169–185

    Article  Google Scholar 

  • Walther G-R, Beißner S, Burga C (2005) Trends in the upward shift of alpine plants. J Veg Sci 16:541–548

    Article  Google Scholar 

  • Willis CG, Ellwood ER, Primack RB et al (2017) Old Plants, new tricks: phenological research using Herbarium specimens. Trends Ecol Evol 32:531–546

    Article  Google Scholar 

  • Willkomm M, Lange J (1861) Prodromus florae Hispanicae: seu Synopsis methodica omnium plantarum in Hispania, sponte nascentium vel frequentius cultarum quae innotuerunt/auctoribus Mauritio Willkomm et Joanni Lange. E. Schweizerbart, Stuttgartiae

    Google Scholar 

  • Wohlgemuth T (1998) Modelling floristic species richness on a regional scale: a case study in Switzerland. Biodivers Conserv 7:159–177

    Google Scholar 

  • Wookey PA, Parsons AN, Welker JM et al (1993) Comparative responses of phenology and reproductive development to simulated environmental change in sub-Arctic and high Arctic plants. Oikos 67:490–502

    Article  Google Scholar 

Download references

Acknowledgements

To all the researchers and naturalists that have been studying the Sierra Nevada during the last 150 years. Project B1-RNM-163-UGR18-Programa Operativo FEDER, 2018 partially funded this research. The Direction and the staff of the National Park of Sierra Nevada provided permissions and greatly assisted the fieldwork. The staff of the Agencia de Medio Ambiente y Agua de Andalucía collaborated in some ongoing and past projects that supported this chapter. GLORIA coordination team at the University of Vienna established the permanent plots to follow the changes in plant communities, and it still supports and gives technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Lorite .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lorite, J. et al. (2022). Altitudinal Patterns and Changes in the Composition of High Mountain Plant Communities. In: Zamora, R., Oliva, M. (eds) The Landscape of the Sierra Nevada. Springer, Cham. https://doi.org/10.1007/978-3-030-94219-9_11

Download citation

Publish with us

Policies and ethics