Skip to main content

Snow Dynamics, Hydrology, and Erosion

  • Chapter
  • First Online:
The Landscape of the Sierra Nevada

Abstract

Sierra Nevada is the southernmost snow area in Europe and its singular geographical location, together with its high altitudes, result in strong gradients of the local climate and hydrology, and rich biodiversity. This chapter aims at providing insights into the major components of the energy and water balance in snowpacks in Mediterranean areas and across the different snow domains found in Sierra Nevada. For this, key descriptors of the snow regime are included from both historical observations and physical modelling during the 1961–2015 period, in the framework of different research projects for the last two decades. The observed relevance of water fluxes to the atmosphere as evaposublimation under these conditions, up to 30–35% of the annual water stored as snow, may be enhanced by the generally observed shift towards torrentiality in the precipitation and snowfall regimes in this site. However, the impacts on hydrology are highly non-linear, with in-season timing of snow events, and their duration, being determinant for the hydrological response and the associated pulse-events of sediment production and deposition downstream. The results highlight the singularity of Sierra Nevada in the context of the high mountain areas in Mediterranean-type regions, and the complexity of the snow dynamics in these areas in the current global warming scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar C, Pimentel R, Polo MJ (2021) Two decades of distributed global radiation time series across a mountainous semiarid area (Sierra Nevada, Spain). Earth Syst Sci Data 13:1335–1359

    Article  Google Scholar 

  • Alahiane N, Elmouden A, Aitlhaj A (2016) Boutaleb S (2016) Small dam reservoir siltation in the Atlas Mountains of Central Morocco: analysis of factors impacting sediment yield. Environ Earth Sci 7512(75):1–11

    Article  Google Scholar 

  • Algarra JA, Herrero J (2016) Monitoring the physical characteristics of the snow layer. In: Zamora R, Pérez-Luque AJ, Bonet FJ et al (eds) Global change impacts in Sierra Nevada: challenges for conservation. Consejería de Medio Ambiete y Ordenación del Territorio, Junta de Andalucía, Granada, pp 36–38

    Google Scholar 

  • Arjona S, Millares A, Baquerizo A (2018) Reservoir sedimentation impact downstream in a semi-arid basin with greenhouses cultivation. E3S Web Conf 40:03006

    Google Scholar 

  • Barberá JA, Jódar J, Custodio E et al (2018) Groundwater dynamics in a hydrologically-modified alpine watershed from an ancient managed recharge system (Sierra Nevada National Park, Southern Spain): insights from hydrogeochemical and isotopic information. Sci Total Environ 640–641:874–893

    Article  Google Scholar 

  • Batalla RJ, Vericat D (2011) An appraisal of the contemporary sediment yield in the Ebro Basin. J Soils Sediments 11:1070–1081

    Article  Google Scholar 

  • Castillo A (2002) Manantiales. Granada, Diputación Provincial de Granada

    Google Scholar 

  • Castillo A (2016) Lagunas de Sierra Nevada, 2nd editio. Universidad de Granada, Granada

    Google Scholar 

  • Corripio JG, López-Moreno JI (2017) Analysis and Predictability of the Hydrological Response of Mountain Catchments to Heavy Rain on Snow Events: A Case Study in the Spanish Pyrenees. Hydrol (2017) Vol 4. Page 20(4):20

    Google Scholar 

  • de Vente J, Poesen J, Bazzoffi P et al (2006) Predicting catchment sediment yield in Mediterranean environments: the importance of sediment sources and connectivity in Italian drainage basins. Earth Surf Process Landforms 31:1017–1034

    Article  Google Scholar 

  • DGMNPF (2007) Inventario Nacional de Erosión de Suelos. Comunidad Autónoma de Andalucía. Granada/Madrrid

    Google Scholar 

  • Di Mauro B, Garzonio R, Rossini M et al (2019) Saharan dust events in the European Alps: role in snowmelt and geochemical characterization. Cryosphere 13:1147–1165

    Article  Google Scholar 

  • Fayad A, Gascoin S, Faour G et al (2017) Snow hydrology in Mediterranean mountain regions: a review. J Hydrol 551:374–396

    Article  Google Scholar 

  • Francia JR, Durán VH, Martínez A (2006) Environmental impact from mountainous olive orchards under different soil-management systems (SE Spain). Sci Total Environ 358:46–60

    Article  Google Scholar 

  • García-Martínez P (1995) La transformación del paisaje y la economía rural en la montaña mediterránea andaluza el caso de la Alpujarra Occidental granadina. Universidad de Granada

    Google Scholar 

  • Gómez-Ortiz A, Palacios D, Palade B et al (2012) The deglaciation of the Sierra Nevada (Southern Spain). Geomorphology 159–160:93–105

    Article  Google Scholar 

  • Gómez-Ortiz A, Oliva M, Salvador-Franch F et al (2014) Degradation of buried ice and permafrost in the Veleta cirque (Sierra Nevada, Spain) from 2006-2013. Solid Earth 5:979–993

    Google Scholar 

  • Gómez-Ortiz A, Oliva M, Salvador-Franch F et al (2019) Monitoring permafrost and periglacial processes in Sierra Nevada (Spain) from 2001 to 2016. Permafrost Periglac Process 30:278–291

    Google Scholar 

  • González-Olalla JM, Medina-Sánchez JM, Lozano IL et al (2018) Climate-driven shifts in algal-bacterial interaction of high-mountain lakes in two years spanning a decade. Sci Reports 81(8):1–12

    Article  Google Scholar 

  • González-Reyes Á, McPhee J, Christie DA et al (2017) Spatiotemporal variations in hydroclimate across the Mediterranean Andes (30°–37°S) since the early twentieth century. J Hydrometeorol 18:1929–1942

    Article  Google Scholar 

  • Herrero J, Polo MJ (2012) Parameterization of atmospheric longwave emissivity in a mountainous site for all sky conditions. Hydrol Earth Syst Sci 16:3139–3147

    Google Scholar 

  • Herrero J, Polo MJ (2016) Evaposublimation from the snow in the Mediterranean mountains of Sierra Nevada (Spain). Cryosph 10:2981–2998

    Google Scholar 

  • Herrero J, Polo MJ, Moñino A, Losada MA (2009) An energy balance snowmelt model in a Mediterranean site. J Hydrol 371:98–107

    Article  Google Scholar 

  • Herrero J, Polo MJ, Losada MA (2011) Snow evolution in Sierra Nevada (Spain) from an energy balance model validated with Landsat TM data. In: Neale CMU, Maltese A (eds) SPIE remote sensing, p 817403

    Google Scholar 

  • Hoffmann G (1987) Holozänstratigraphie und Küstenlinienverlagerung an der andalusischen Mittelmeerküste. Bremen

    Google Scholar 

  • Jabaloy-Sánchez A, Lobo FJ, Azor A et al (2014) Six thousand years of coastline evolution in the Guadalfeo deltaic system (southern Iberian Peninsula). Geomorphology 206:374–391

    Article  Google Scholar 

  • Lana-Renault N, Regüés D (2009) Seasonal patterns of suspended sediment transport in an abandoned farmland catchment in the Central Spanish Pyrenees. Earth Surf Process Landforms 34:1291–1301

    Article  Google Scholar 

  • Latron J, Llorens P, Gallart F (2009) The hydrology of Mediterranean mountain areas. Geogr Compass 3:2045–2064

    Article  Google Scholar 

  • Lievens H, Demuzere M, Marshall H-P et al (2019) Snow depth variability in the Northern Hemisphere mountains observed from space. Nat Commun 101(10):1–12

    Google Scholar 

  • López-Moreno JI (2005) Recent variations of snowpack depth in the Central Spanish Pyrenees. Arctic Antarct Alp Res 37:253–260

    Google Scholar 

  • López-Moreno JI, Beniston M, García-Ruiz JM (2008) Environmental change and water management in the Pyrenees: facts and future perspectives for Mediterranean mountains. Glob Planet Change 61:300–312

    Article  Google Scholar 

  • López-Moreno JI, Gascoin S, Herrero J et al (2017) Different sensitivities of snowpacks to warming in Mediterranean climate mountain areas. Environ Res Lett 12:74006

    Article  Google Scholar 

  • Martos-Rosillo S, Ruiz-Constán A, González-Ramón A et al (2019) The oldest managed aquifer recharge system in Europe: new insights from the Espino recharge channel (Sierra Nevada, southern Spain). J Hydrol 578:124047

    Article  Google Scholar 

  • Millares A, Moñino A (2018) Sediment yield and transport process assessment from reservoir monitoring in a semi-arid mountainous river. Hydrol Process 32:2990–3005

    Article  Google Scholar 

  • Millares A, Moñino A (2020) Hydro-meteorological drivers influencing suspended sediment transport and yield in a semi-arid mountainous basin. Earth Surf Process Landforms 45:3791–3807

    Article  Google Scholar 

  • Millares A, Gulliver Z, Polo MJ (2012) Scale effects on the estimation of erosion thresholds through a distributed and physically-based hydrological model. Geomorphology 153–154:115–126

    Article  Google Scholar 

  • Millares A, Polo MJ, Moñino A et al (2014) Bedload dynamics and associated snowmelt influence in mountainous and semiarid alluvial rivers. Geomorphology 206:330–342

    Article  Google Scholar 

  • Millares A, Moñino A, Arjona S, Baquerizo A (2018) Suspended sediment dynamics by event typology and its siltation effects in a semi-arid snowmelt-driven basin. E3S Web Conf 40:04008

    Google Scholar 

  • Millares A, Díez-Minguito M, Moñino A (2019) Evaluating gullying effects on modeling erosive responses at basin scale. Environ Model Softw 111:61–71

    Article  Google Scholar 

  • Millares A, Cantalejo M, Galve JP (2021) Respuesta erosiva y sedimentaria al cambio climático y global en cuencas mediterráneas de montaña. In: CONAMA, Congreso Nacional de Medio Ambiente. Madrid

    Google Scholar 

  • Moñino A, Millares A, Herrero J et al (2011) Measurement of infilling rate in a small reservoir in a Mediterranean semi-arid area. Geophys Res Abstr 13:2011–10756

    Google Scholar 

  • Moreno-Llorca R, Vaz AS, Herrero J et al (2020) Multi-scale evolution of ecosystem services’ supply in Sierra Nevada (Spain): an assessment over the last half-century. Ecosyst Serv 46:101204

    Article  Google Scholar 

  • Ollesch G, Kistner I, Meissner R, Lindenschmidt K-E (2006) Modelling of snowmelt erosion and sediment yield in a small low-mountain catchment in Germany. CATENA 2–3:161–176

    Article  Google Scholar 

  • Orgiazzi A, Panagos P (2018) Soil biodiversity and soil erosion: it is time to get married. Glob Ecol Biogeogr 27:1155–1167

    Article  Google Scholar 

  • Pérez-Luque AJ, Pérez-Pérez R, Bonet-García FJ, Magaña PJ (2015) An ontological system based on MODIS images to assess ecosystem functioning of Natura 2000 habitats: a case study for Quercus pyrenaica forests. Int J Appl Earth Obs Geoinf 37:142–151

    Article  Google Scholar 

  • Pérez-Palazón MJ (2019) Análisis de tendencias en los flujos de agua y energía de la capa de nieve a diversas escalas en Sierra Nevada. Universidad de Córdoba, UCOPress

    Google Scholar 

  • Pimentel R, Herrero J, Zeng Y et al (2015) Study of snow dynamics at subgrid scale in semiarid environments combining terrestrial photography and data assimilation techniques. J Hydrometeorol 16:563–578

    Article  Google Scholar 

  • Pérez-Palazón MJ, Pimentel R, Polo MJ et al (2018) Climate trends impact on the snowfall regime in Mediterranean mountain areas: future scenario assessment in Sierra Nevada (Spain). Water 10:720

    Article  Google Scholar 

  • Pimentel R, Herrero J, Polo MJ (2017a) Subgrid parameterization of snow distribution at a Mediterranean site using terrestrial photography. Hydrol Earth Syst Sci 21:805–820

    Article  Google Scholar 

  • Pimentel R, Herrero J, Polo MJ (2017b) Quantifying snow cover distribution in semiarid regions combining satellite and terrestrial imagery. Remote Sens 9:995

    Article  Google Scholar 

  • Polo M, Herrero J, Aguilar C et al (2009) WiMMed, a distributed physically-based watershed model (I). Environ Hydraul Theor Exp Comput Solut 225–228

    Google Scholar 

  • Polo MJ, Herrero J, Pimentel R, Pérez-Palazón MJ (2019) The Guadalfeo Monitoring Network (Sierra Nevada, Spain): 14 years of measurements to understand the complexity of snow dynamics in semiarid regions. Earth Syst Sci Data

    Article  Google Scholar 

  • Polo MJ, Pimentel R, Gascoin S, Notarnicola C (2020) Mountain hydrology in the Mediterranean region. Water Resour Mediterr Reg 51–75

    Google Scholar 

  • Renard KG, Foster GR, Weesies GA et al (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook, 703

    Google Scholar 

  • Santi PM, Hewitt K, VanDine DF, Barillas Cruz E (2010) Debris-flow impact, vulnerability, and response. Nat Hazards 561(56):371–402

    Google Scholar 

  • Skiles SM, Painter TH (2018) Assessment of radiative forcing by light-absorbing particles in snow from in situ observations with radiative transfer modeling. J Hydrometeorol 19:1397–1409

    Article  Google Scholar 

  • Tanasienko AA, Yakutina OP, Chumbaev AS (2011) Effect of snow amount on runoff, soil loss and suspended sediment during periods of snowmelt in southern West Siberia. CATENA 87:45–51

    Article  Google Scholar 

  • Torres R, Millares A, Aguilar C et al (2013) Zonal characterization of hillslope erosion processes in a semi-arid high mountain catchment. Geophys Res Abstr 15:2013–13894

    Google Scholar 

  • Vázquez F (1995) Restauración hidrológico-forestal de la cuenca alimentadora del embalse de Rules en el río Guadalfeo. Granada, Confederación Hidrográfica del Sur de España, Málaga

    Google Scholar 

  • Vigl LE, Schirpke U, Tasser E, Tappeiner U (2016) Linking long-term landscape dynamics to the multiple interactions among ecosystem services in the European Alps. Landsc Ecol 319(31):1903–1918

    Google Scholar 

  • Viviroli D, Weingartner R (2004) The hydrological significance of mountains: from regional to global scale. Hydrol Earth Syst Sci 8:1017–1030

    Article  Google Scholar 

Download references

Acknowledgements

This work was conducted under the aegis of the research groups DFH (Fluvial Dynamics and Hydrology, TEP248-PAIDI) and DFA (Environmental Fluid Dynamics, TEP209-PAIDI), and funded by the FEDER Program through the Spanish Ministry of Science and Innovation (research project RTI2018-099043-B-I00, OPERA, “Operability in hydrological management under snow torrentiality/drought conditions in the high mountain in semiarid watersheds”) and the Spanish Ministry of Economy and Competitiveness (research project CGL 2014-58508R, GMS-SNOWMED “Global monitoring system for snow areas in Mediterranean regions: trends analysis and implications for water resource management in Sierra Nevada”; research project CGL 2011-25632, SNOWMED, “Snow dynamics in Mediterranean regions and its modelling at different scales. Implication for water management”), the European Union’s H2020 programme under grant agreement 641762, “ECOPOTENTIAL: improving future ecosystem benefits through earth observations”, and by the project AQUACLEW, which is part of ERA4CS, an ERA‐NET initiative by JPI Climate “Connecting Climate Knowledge for Europe” Grant 690462, and co‐funded by MINECO (Spain). Moreover, the present work was partially developed within the framework of the Panta Rhei Decade of the International Association of Hydrological Sciences (IAHS) (working group Water and energy fluxes in a changing environment). Rafael Pimentel acknowledges funding by the Juan de la Cierva Incorporación Program of the Ministry of Science and Innovation (IJC2018-038093-I). The continuous support of the Natural and National Park of the Sierra Nevada has also been determinant for the development of this line of research since 2002. Rafael Pimentel and María J. Polo are members of DAUCO, Unit of Excellence ref. CEX2019-000968-M, with financial support from the Spanish Ministry of Science and Innovation, the Spanish State Research Agency, through the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María J. Polo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Polo, M.J. et al. (2022). Snow Dynamics, Hydrology, and Erosion. In: Zamora, R., Oliva, M. (eds) The Landscape of the Sierra Nevada. Springer, Cham. https://doi.org/10.1007/978-3-030-94219-9_10

Download citation

Publish with us

Policies and ethics