Keywords

Introduction

Transportation is an essential functionality. Individuals perform routine activities to meet their specific daily demands, and transportation provides the opportunities to perform these, as well as to attend to a variety of commercial and social activities, amongst others. For instance, working individuals commute to/from work, children get to school or take part in extracurricular activities, families participate in leisure activities, and the elderly population engage in social or voluntary gatherings. Taking part in these activities not only enhances social interaction but also contributes to the physical and emotional wellbeing of individuals [1, 2]. Studies show that the perceived quality of public transportation [3, 4], physical mobility [5], participation in recreational travel [6], residential relocation [7] and active travel (walkability: [8] and cycling: [9]) affect quality of life.

Conversely, negative impacts of transportation causes individual quality of life (QoL) to deteriorate. For instance, an increase in vehicle kilometers traveled (VKT) by private motorized vehicles negatively affects the environment through vehicle emissions and traffic congestion [10]. These traffic problems cause increased costs, travel delays, health impacts, air pollution and a reduction in individual subjective wellbeing (SWB) [11]. A similar study reported that long commuting to work induces stress and impacts psychological wellbeing [12].

In transportation-based QoL, most studies have mainly focused on SWB measures to improve the transport mobility of specific groups. For instance, many studies address SWB for transport disadvantaged groups with a special emphasis on the aging of society [13,14,15,16,17,18]. To date, the holistic approach to understanding the association between various aspects of transportation and the SWB measures has not received enough attention. Against this background, the central question addressed in this paper is how do various transportation aspects affect QoL and how can these aspects be quantified in the individual’s daily life? What are the relevant transport policies and practices that can enhance wellbeing at the individual and societal level?

The remainder of this chapter is organized as follows. Section “Transportation Related QoL” presents the findings of the scoping and expert consensus and identifies the extant literature that explores transport-related indicators in the context of QoL. Following this, the conceptual framework (TRAWEL) is then presented in section “TRAWEL: A Conceptual Framework for Transportation Based QoL”, explaining the link between five broader dimensions of transport (transport infrastructure and services, built environment, transport externalities, travel-based time use and travel satisfaction) and measures of SWB (community, social, economic, physical and psychological). The indicators, measures and methods used for the continuous, longitudinal and quantitative assessment of these five aspects in a wellbeing context are discussed in section “Quantifying Transportation: Method and Measures”. Finally, the chapter discusses its contribution in section “Discussion” and concludes by surveying policy implications towards improving wellbeing and future research directions in section “Conclusive Remarks”.

Transportation Related QoL

The World Health Organization [19] defined individual QoL as “individuals’ perception of their position in life in the context of the culture and value systems in which they live and in relation to their goals, expectations, standards, and concerns”. Individual QoL in the context of transport mobility is defined by the WHO as “the person’s view of his/her ability to get from one place to another, to move around the home, move around the workplace, or to and from transportation services”. Additionally, Myers [20] state that “a community’s QoL is constructed of the shared characteristics of the residents’ experience in places (for example air and water quality, traffic or recreational opportunities) and the subjective evaluations residents make of those conditions”.

The central focus of this chapter is how transportation alters the QoL of an individual. To this end, a number of studies were critically examined to understand the association between transportation aspects and wellbeing. Methods leveraged in this paper include the scoping review method and expert opinion consensus. Articles and grey literature published from January 2005 to June 2020 were identified, 55 of which met the inclusion criteria and are presented in this paper. The inclusion criteria stated that a study had to focus on one of the seven performance indicators of transportation in the wellbeing context: mobility, affordability, accessibility, connectivity, externality, travel needs and attitudes. In the following paragraphs, we define and discuss these separately.

Transport mobility is defined as the ability to move from one place to another using different types of movement such as walking, cycling, transit and driving [21, 22]. Studies on transport mobility broadly focus on measuring the impact of the transport sector on the QoL of the elderly population, especially in developed economies [2, 23]. Several studies highlight that out-of-home mobility positively influences the QoL of aging individuals. Older people (>65 years) with a driving license are likely to enjoy better mobility benefits in terms of out-of-home activities compared to non-drivers [23]. Social exclusion occurs when the transport mobility needs of elderly people are not adequately addressed. For instance, Jalenques et al. [24] found that older people who do not drive tend to be adversely affected with low QoL due to their dependence on others. Besides older people, Jones et al. [25] explored the impacts of micro mobility i.e., e-bikes, on individual health and wellbeing. Based on qualitative assessments, the purchase and usage of e-bikes positively correlate with personal wellbeing. Moreover, pedestrian-oriented development plans such as walkability and bike ability services also positively impact individual QoL [26, 27].

Transport affordability as defined by Litman [28] is the ability by all households to make journeys and access services while devoting less than 20% of household budgets to transport. In this manner, studies have analyzed the economic aspect of transportation using QoL indicators to understand individual wellbeing. For instance, De Groot and Steg [29] examined the impact of transportation pricing policy on car use using 22 QoL indicators (e.g., comfort, money, income and environmental quality). The study found that cost of car use negatively affects certain wellbeing indicators such as environmental quality, money, change and work, while it positively impacts indicators such as comfort and safety. Using the Delphi method, Zelinková [30] assessed the effect of road pricing on QoL measures such as safety and stress and found that successful transportation implementation depends on political will and public acceptance. Schwarzlose et al. [31] found that users are willing to pay for a flexible transport route service to improve QoL for the rural elderly.

Transport accessibility is defined as “the extent to which land-use and transport systems enable individuals to reach activities or destinations by means of a (combination of) transport mode(s)” [32, p. 128]. The accessibility of various facilities around the neighbourhoods is measured by the urban density, diversity of neighbourhoods, land use mix, green space, open spaces, walkability and connectivity. In particular, Ritsema et al. [33] suggested that living in high-density environments enables greater transport accessibility than in low-density suburbs. Other studies have conceptualized QoL dimensions to enable transport accessibility in transport planning. Lee and Sener [34] developed the Transportation QoL (TQoL) framework encompassing four dimensions of physical, mental, social and economic wellbeing and three components of the transportation system, namely accessibility, the built environment and vehicle traffic. In another study, Nakamura et al. [35] categorized transportation access, amenity and safety as QoL dimensions for understanding residential choices focusing on Transit-Oriented Development (TOD) for different socioeconomic groups.

Transport connectivity focuses on the links of the entire system that represent the interaction between multimodal transport modes and the ease of access to them [36]. Haslauer et al. [37] explored how the proximity and connectivity of public transport services within a community enhance QoL. Other studies have suggested that public infrastructure, connectivity, public space and green space positively influence the wellbeing of residents and thus enhance the neighborhood QoL [38, 39]. In addition, a series of studies on the built environment has confirmed that land-use heterogeneity characterized by mixed land use, walkability and park density enhances social connectivity and thus improves community wellbeing, while population density and proximity to mass-transit stations negatively impact health-related QoL [40,41,42,43,44].

Traffic safety and air quality are major concerns of road transport planning that directly and indirectly affect health [45]. A series of studies on traffic safety demonstrates that overall QoL decreases in cases of injury and illness [46,47,48,49]. In addition, Putra and Juwita [50] analyzed how a public transport service with low safety standards increases stress for passengers. Regarding personal safety, studies have found that perceived safety on urban streets affects QoL. In this context, Deegan and Baker [51] assessed residents’ perceptions on road infrastructure and find that dark and narrow streets, illegally parked cars and low social cohesion affect personal safety. Also, Pánek et al. [52] reported that residents fear crime in underpasses, on train stations and on dark and narrow roads. Besides safety, traffic-related pollution directly affects SWB [53]. It has been found that exposure to traffic-related air pollution impacts physical wellbeing, while subjection to noise annoyance affects psychological wellbeing [54].

Travel needs are derived from different types of activities and vary not only from person to person but also with different life stages [55]. Many travel time-use studies have found that travel serving social interaction or recreation enhances both physical and mental wellbeing [18, 56,57,58,59,60,61]. Job and job-related travel causes stress and negatively impacts wellbeing due to the congestion, crowding and unpredictability of peak time travel [62,63,64,65].

Travel related attitudes refer to the psychological evaluation of transport systems and daily travel elements (e.g., travel modes, trips and travel time), conveying some degree of favor or disfavor [66]. To understand the impact of changing travel behaviour on wellbeing, studies evaluate the association between travel attitudes towards travel choices (mode use, commute time, route destinations) and emotional wellbeing. For instance, studies have quantitatively investigated how attitudes towards commute trips by different modes or travel time influence hedonic and eudemonic wellbeing [67,68,69,70,71]. These studies suggest that shorter travel times and active travel modes positively affect hedonic wellbeing in the short-term and induce an eudemonic state in the long run.

Summarizing the research results so far, the following research gaps are observed in the quantification of QoL dimensions in transportation. First, in addressing the impact of transportation infrastructure and services, it may be noted that relatively little research has examined the impact of mobility and affordability on QoL for economically disadvantaged social groups. For instance, differences in household income levels affect individual and household wellbeing, also affecting mobility and the affordability of transport services, as pointed out by Hernández [72]. Existing studies fail to address the impact of reducing transport costs in terms of vehicle purchase, fuel prices, transit fares, etc. on wellbeing. An interesting research direction with reference to QoL could be to investigate the effect on community wellbeing of supply-based factors like physical functions including road networks, cross-sectional design and vehicular traffic. Second, within literature on the built environment, studies on accessibility and connectivity suggest that high-density regions and proximity to public transport improve an individual’s QoL. However, the existing research lacks empirical evidence on how residential differences, spatial-temporal constraints or a lack of adequate connectivity influences individuals’ QoL.

Third, existing studies on transport externalities mostly focus on the effect of air pollution or traffic safety on health-related burdens, ignoring the socio-economic aspects. For instance, the impact of the socio-economic burden of transport related emissions and safety issues on QoL is still unknown.

Fourth, regarding individual travel time use, travel needs are highly interconnected with work, family and social life. However, existing studies on QoL mostly focus on the health impacts of leisure and commuting trips. Daily travel activities also involve maintenance trips such as shopping and childcare (organized activities, help with homework, overseeing playtime and escorting), which involve car use and related stress. However, little is yet known about such negative impacts on health over time. Finally, travel attitudes and their association with QoL have mostly been analyzed in the context of travel satisfaction e.g., mode usage, travel time and their effect on hedonic wellbeing. However, travel motivations also involve emotion, attitudes and preferences that are bound by other long-term choices (destination, residential occupation), as pointed out by De Vos et al. [68]. In this context, less is known in the literature about the impact of travel satisfaction on eudemonic wellbeing in the long run.

Based on the key findings synthesized from the literature review, it can be seen that existing studies in transportation research have not completely addressed the QoL dimensions in transportation. Some conceptual models have been developed [16, 73,74,75,76]; however, these frameworks are firmly rooted in SWB understandings and focus on the mobility of older people, out-of-home or leisure-based activities, the built environment and travel choices. Overall, a complete picture of how transportation hinders or facilitates wellbeing is still missing from the literature, as transportation factors such as transport infrastructure and services, the built environment, transport externalities, travel time use and travel satisfaction and wellbeing dimensions such as social, community, economic, physical and psychological are interdependent and influence each other at various levels. This additionally calls for analysis of how each aspect of transportation impacts wellbeing not just at the individual level but also at the community level at large.

TRAWEL: A Conceptual Framework for Transportation Based QoL

The study presented here proposes a conceptual framework (Fig. 24.1) that has been derived via an expert consensus process to holistically synthesize the impact of transportation on wellbeing at two levels. First, the elements of a transport system (infrastructure and services, built environment, and externalities) and its impact on wellbeing are discussed at the societal level (sections “Transport Infrastructure and Services (Mobility and Affordability)”, “Built Environment (Accessibility and Connectivity)” and “Transport Externalities (Safety and Air Quality)”). Second, individual travel needs and travel satisfaction with regard to travel elements and effects on their wellbeing are explained at the individual level (sections “Travel and Time Use (Travel Needs)” and “Travel Satisfaction (Travel Related Attitudes)”). The societal level is discussed first, as it is a context within which the individual behaviors occur. The conceptual framework TRAWEL will add to the existing literature as it explains the association between five broader aspects of transportation, as derived from the literature review: (1) transport infrastructure and services, (2) the built environment, (3) transport externalities, (4) travel and time use and v) travel satisfaction and wellbeing measures.

Fig. 24.1
figure 1

Conceptual framework of TRAWEL explaining the interconnectedness between transportation aspects and QoL

Source: Author’s compilation

Transport Infrastructure and Services (Mobility and Affordability)

Transport infrastructure and services form an integral part of the transport system as they enable people to cater for their travel needs. So far, as described in the state-of-the-art section above, the mobility dimensions of older people and the affordability of various pricing strategies have been discussed in assessments of QoL. Here we discuss how the underlying factors such as the road network and transport services affect individual QoL.

The capacity of road infrastructure and the availability of transport services support individuals’ mobility and capacity to take part in a range of socio-economic activities. A recent study found a positive association between road and infrastructure development and community satisfaction [77]. Meanwhile, the development of road infrastructure that cannot cope with increased mobility demands may lead to induced traffic [78, 79]. In such a case, the congestion is not appreciably reduced, but rather causes a strain on other mobility infrastructure services such as the availability of public transportation, pedestrian facilities, Non-Motorized Traffic (NMT), or parking facilities. This is because cities follow car centric policies and most services are available far from residential neighbourhoods. For these reasons, public transport services become unavoidable for individuals with low car access.

A recent paradigm shift in urban transport is the application of Intelligent Transport Systems (ITS) that cover a range of innovative demand-oriented services in transportation. They include Mobility as a Service (MaaS), driver monitoring systems, vehicle technologies, automated driving, travel time prediction and congestion management. Each of these services aims to cut car dependency, curb traffic congestion, enhance autonomy, improve flexibility and safety, provide cost effective services and promote cleaner transport. Jones et al. [25] found positive attitudes towards technology interventions like e-bikes and QoL.

Digital advancement in ITS plays a prominent role in shaping individual QoL, especially for transport disadvantaged groups who are economically and physically constrained. First, transition in existing mobility services comes at the price and disturbs individuals who are economically stretched. Evidence shows that there is a negative association between transport affordability for individuals and SWB [80, 81]. This is because affordability for individuals largely depends on the resources they possess: physical capital (income), human capital (educational level) and social capital (participation in reciprocity networks), as pointed out by Hernández [72]. Second, a study confirms that older people are less adaptable to ITS in their daily lives, contributing to unintended social exclusion [16].

Alternatively, the mobility options could be enhanced by on-demand mobility services, known as Flexible Transport System. Some flexible transport services such as shared taxicabs, shuttle vans, dial-a-ride services and para-transit services are offered as stand-alone services. These services generally cater for a specific group of the population or fill a specific need. Shared or collective flexible transport services include services such as ridesharing, car sharing and car-hailing services and bring together public and private transport services and volunteer transport services to provide cost-efficient connectivity for the entire community [82]. In this respect, the system supports the mobility needs of diverse groups such as women with young children, individuals living in rural communities, older people and disabled people.

Besides a flexible transport service, well-kept pavements (sidewalks), lighting and crossings play a significant role in catering for essential mobility demands such as walkability and bike-ability. Both cycling and pedestrian infrastructure play a crucial role in enhancing the QoL, especially in the community where pedestrian mobility is predominant [83]. A study of older people revealed that problems with standing and a lack of walking infrastructure for at least 400 m decreases QoL [5, 84]. Overall, the successful implementation of new mobility services depends on the pricing policy that constitutes the subsidies, differentiated pricing and different land use mixes. In this way, both mobility and affordability are ensured so that the transportation system enhances community wellbeing.

Built Environment (Accessibility and Connectivity)

The built environment encompasses a range of neighborhood services such as healthcare and education services and amenities such as green space, parks or shopping malls. So far, factors like urban density or proximity to public transport have been predominantly discussed in the literature, ignoring the effect of constraints on QoL such as differences in residential location or a lack of connectivity.

Access to services and amenities is ensured by the connectivity of road infrastructure and proximity of public transportation in neighborhoods. The ability to access essential services like health care facilities, grocery shops or public transit services enhances active travel behaviour (walking and biking), leads to significant health benefits [39, 85, 86]. Besides physical health, the built environment provides opportunities for social participation and a sense of belonging to the place in question. Studies find that proximity to public transport services and access by bicycle or on foot to green spaces enhance the possibility of social interactions among different population groups, which positively influences QoL [87,88,89,90,91,92].

Built environments with well-connected street network accessibility and connectivity encourage individuals to take part in value-related out-of-home activities such as commerce, employment or recreation. These opportunities attribute a sense of belonging to a community and contribute to social wellbeing. However, if the built environment fails to provide neighbourhood accessibility, then it becomes a burden for the residents to travel and develop social connections. For instance, in residential suburbs on the outskirts of urban areas or in newly developed areas, the road network may lack continuity and provides limited access to services and amenities, which poses a threat to individuals with physical disabilities. Also, the economically constrained population live in the suburbs, while the high-income groups mostly live in the downtown region. Such spatial mismatches lead to unemployment as the skills possessed by the workers do not match the opportunities, as pointed out by Levinson and Krizek [93, p. 132]. It is proven that low-income and unemployed people mostly depend on public transport [94].

An absence of connectivity to public transit also reduces employment opportunities. In such a situation, access to transit use may positively impact the QoL of low-income individuals, while the growth of car-reliant communities along the transit-oriented development (TOD) corridors negatively affects the QoL of low-income groups [35]. Individuals who have access to private cars can travel further in search of opportunities, which affects groups with no or limited car access. For instance, Cao et al. [95] found that living in suburban areas positively affects car dependence compared to living in urban areas. Altogether, a multidisciplinary approach to policy planning is warranted to move towards creating more activity-friendly communities and catering for individuals who are spatially or economically constrained.

Transport Externalities (Safety and Air Quality)

Transport externalities are the negative impacts of transport on the environment (e.g., congestion, air pollution, noise) and on society (e.g., road safety and public safety). So far, as described in section “Transportation Related QoL”, city level planning adopts three different strategies to address traffic externalities. First, road safety is ensured through the physical attributes of road space (e.g., width and the cross-sectional attributes of pavements) and physical functions (e.g., zebra crossings, lighting), and by implementing road safety measures (e.g., creating awareness for road users, reducing drink driving and the strict enforcement of speed limits) [96]. Second, air quality is maintained by adopting vehicle emission control measures, alternative fuel usage and enforcing regulations for older vehicles [97]. Third, congestion is addressed by reducing car usage through push-pull demand management measures such as parking, pricing and subsidies [98]. From the QoL perspective, these strategies concern the physical and technical aspects of road infrastructure but ignore the social aspects.

Studies across the global south (Latin America, Sub-Saharan Africa) and global north (Europe, United Kingdom and the United States) have documented how transport-related externalities such as congestion, vehicle emissions, noise pollution and road safety affect the livelihoods of various social groups [97, 99,100,101,102,103,104,105,106,107,108]. These studies together emphasize that externalities become a social problem when non-transport users are affected by such problems. Drawing on these studies, the following contributing factors are identified. First, individuals living in the downtown area or along the highways are predominantly exposed to greenhouse gas (GHG) emissions, which directly impacts their health and wellbeing. Second, individuals who reside in the outskirts with poor transportation suffer from congestion-related stress. Third, individuals with a vulnerable mode of transport (walking or cycling) combined with poor quality transport are highly exposed to traffic accidents, potentially leading to permanent illness and injury. Fourth, deficient road infrastructure hampers the livelihood of residential communities as it cuts off the community, hampers social interaction and disturbs social wellbeing. Finally, the physical functioning of road infrastructure pose serious hazards to the social security of women, children and older people.

Overall, it can be seen that transport externalities widely affect social groups and their wellbeing in the long run. To enable a healthy, safe, and communal way of life, it is recommended that policies addressing traffic externalities should consider social aspects such as income level differences, gender dimensions and age-related barriers besides the technical aspects of road infrastructure and vehicle design.

Travel and Time Use (Travel Needs)

Individuals’ daily travel needs are driven by their participation in out-of-home activities related to work, education, errands, sports, leisure and recreation. So far, as described in the section “Transportation Related QoL”, travel needs linked to leisure and commuting have been discussed. Such studies observe that travelling for recreational needs such as socializing with friends, visiting recreational places, sports and exercise involves physical movement and enhances enjoyment and amusement, which improves the physical and mental wellbeing of individuals [1, 109,110,111,112]. Studies on job-related travel suggest that job or business travel causes commuting stress, starting from the pre-trip planning (work, family and travel arrangements), including the travel itself (delay and safety issues) and ending with post-trip workloads (e.g., family commitments); however, such trips may have a positive impact on economic wellbeing such as income, productivity and personal development [113,114,115,116,117,118,119].

The following contributing factors have been identified in this context. First, the gender aspect recognizes that women carry a disproportionate share of unpaid work such as errands, shopping and childcare. These responsibilities leave them with no choice but to combine trips to perform work and family obligations. As suggested by many travel time-use studies within households, it is women who undertake shorter commutes, have less choice on the labour market, and have less access to a car in case of one-car households and traditional household patterns [120,121,122,123]. Second, research shows that individuals who travel with household members (e.g., joint travel for pickup and drop off, shopping activities, leisure trips) tend to travel more happily than when travelling alone [122, 124]. Third, studies on travel-based multitasking reportedly claim that women do more socializing and accompanying of children, while men do more work-related tasks [125, 126].

Aside from the gender differences and the travel time use perspective, overall, studies on wellbeing mostly focus on the professional sphere and recreational aspects but exclude the domestic sphere. However, such trips could affect daily moods and emotions. For instance, a recent study on travel time use finds that activity during travel determines hedonic wellbeing or short-term happiness [127]. However, less is known in the literature about the impacts of unpaid trips, joint trips and travel-based multitasking on individual wellbeing in the long run. Henceforth QoL studies on travel behavior should jointly consider the various dimensions of travel needs at individual level and intrahousehold dynamics at household level, as pointed out by Sweet and Kanaroglou [128].

Travel Satisfaction (Travel Related Attitudes)

Adopting an individual view on transportation and wellbeing also includes travel satisfaction. Studies have found a positive association between travel satisfaction and SWB (e.g., [5, 68, 75, 129,130,131]). SWB is commonly approached from two perspectives: travel hedonic or affect and travel eudemonia. So far, as described in section “Transportation Related QoL”, the association between travel satisfaction and hedonic wellbeing has been given primary importance. Some of the contributing factors identified in the proposed framework are travel experience, mode use, residential and destination choice.

Travel experience is characterized by hedonic feelings such as emotional state or mood and cognitive evaluations of an individual’s context. Some common hedonic feelings include commuting stress in public transport, feelings of pleasure and happiness when riding a bicycle or driving a car. Such hedonic feelings influence travel decisions. For instance, individuals who enjoy cycling may reduce their car commuting. In other cases, individuals who experience feelings of stress during congestion ought to seek alternate routes or modes. Ettema et al. [69] found that mode switching to sustainable modes triggers higher levels of SWB.

In the long term, hedonic wellbeing contributes to personal growth, finding purpose or meaning, and self-actualization, or achieving one’s full potential, termed eudemonic wellbeing [68]. Travel eudemonia relates to intrinsic motivations for traveling such as personal development (self-confidence, physical or mental health), competence (e.g., driving, riding), autonomy (freedom), and relatedness (e.g., social connections) [132]. For instance, commuting by car is connected to freedom, comfort and self-identity, while riding a cycle may yield health benefits.

Regarding mode use, numerous studies explore the association between active travel and hedonic-eudemonic wellbeing. For instance, Singleton [133] found that active transport such as walking and biking positively influences SWB [133]. In another study, Woodcock et al. [134] examined the impact of encouraging active transport on individuals’ health and found that active transport reduced heart disease among men and reduced depression among women. In addition, a recent study found that active travel certainly enhances eudemonic wellbeing more than public transit [135]. Public transport users have needs and preferences, including reliability, convenience, safety, comfort, accessibility and affordability, that affect their satisfaction with the services provided. Some studies have shown that commuting by public transport reduces QoL compared to driving by car [136].

Regarding residential choice, people who live in their preferred neighborhood based on travel preferences (e.g., car lovers living in suburban types of neighborhoods) are more satisfied than people who do not. Participation in travel activities in larger cities is more weakly associated with life satisfaction than in smaller cities [1]. In addition, travel satisfaction might also affect performance of and satisfaction with activities at the trip destination. For instance, experiencing frequent positive emotions during travel may depend on the type of activity at the destination [74, 137]. The studies addressing SWB have so far focused on traditional mobility options, as pointed out by Ettema et al. [69]. From a policy perspective, travel satisfaction with respect to new mobility options such as technology-based modes (electric, autonomous) and shared mobility (car sharing, ride sharing, para transit) could provide further insights to understanding individual perceptions and preferences.

Quantifying Transportation: Method and Measures

In transport planning, a variety of methods have been used to identify potential indicators at micro and macro-level. Existing studies employ both qualitative and quantitative approaches to evaluate SWB in travel-based QoL. Building on the previous literature, a series of indicators for each aspect of the conceptual framework are listed in Table 24.1. Discussion focuses on the various survey-based and automatic, sensor-based approaches to collecting data related to measures and recommended possible subgroups for the analysis; the aim is to understand group differences in the association between transportation aspects and wellbeing.

Table 24.1 Measures and methods for assessment of Travel Based QoL

Transport Infrastructure and Services

The data for transport infrastructure and services can be obtained using five measures: (1) the physical attributes of the transport network such as road capacity, road geographical features and traffic composition can be collected using the Geographical Information System (GIS) data model, for example managed by the local city or regional authorities or other stakeholders, as pointed out by Croce et al. [138]; mobility-relevant data such as frequency of trips, travel distance and duration [139]; (2) information about individuals’ use of different travel modes such as flexible transport services, ride sharing services, paratransit, car availability, walking and cycling may be obtained from national or regional household travel surveys, as in the case of most recent studies [140, 141]; (3) data on public transportation services such as level of service, mobility and accessibility factors can be collected using GIS tools complemented by vehicle location system and smart card fare data [142, 143]; (4) automated data collection systems in ITS can provide data on automated fare collection, automatic passenger counts including information about passengers and vehicle spatial attributes such as the GPS positioning of vehicles, time of the day, inbound/outbound details of actual arrival and departure times at the beginning of the route, end of the route and at every bus stop along the route [144]; and (5) data attributed to transport costs (taxes, accident costs, medical expenditure) can be obtained from respective transit agencies, insurance agencies and medical care facilities.

Built Environment

The geospatial method can be adopted to examine the association between an individual’s participation in an activity (e.g., going to a library, going to a supermarket, etc.) and geographic accessibility [86]. Available land-use and land-cover data from local city or regional authorities or other stakeholders and from open sources like European Union open data portals can be used to understand the spatial distribution of different land uses. Travel survey data of residents living in traditional neighborhoods, suburbia [95] and other regions can be used to compare different neighborhoods’ mobility characteristics. Both the geospatial data and travel survey data can also be obtained from secondary sources like government organizations and certified private agencies. The data attributed to the transport network must include walking trails and bicycle networks [145] and the traditional road network data. Extending these data sources, geospatial techniques like those leveraged by D’Orso and Migliore [83] could be used to assess walkability to and from transport services based on practicability, pleasantness and safety. In addition to these data techniques, transit network data could be collected from local transport agencies to analyze the connectivity and proximity of transit services [91].

Transport Externalities

The data for traffic congestion such as traffic volume, mode classification and level of service can be obtained from household travel surveys and traffic count data [146]. In addition, data on safety in daily travel can be obtained through face-to-face interviews and online feedback forms or can be incorporated as a component in household survey data. Air quality data from air quality monitoring stations can help model exposure level to gaseous pollutants and particulate matter. Recent advances in technology interventions have led to portable instruments for measuring vehicular emissions on-board [147, 148] that could also be employed in data collection. As an individual’s exposure level also varies with different mobility patterns, it can be measured using the Portable Air Quality Monitoring sensors (PAMs) over a period [149]. These data can form a basis for modelling the health-related QoL of the public and vulnerable groups. Additionally, a noise emission model can capture the noise generated by the impact of road traffic on vehicle kinematics [100].

To measure the social impact of transport externalities on social groups, data on individual attributes (gender, age, employment status and personal income, etc.) and household attributes (household size, number of children and dwelling type, etc.) are required. These data are mostly derived from structured self-reports (e.g., household travel surveys) where the respondents (mainly the household head) self-report individual, household and travel attributes. Health data can be collected through national health surveys [150].

Travel and Time Use

Travel and time use related data can be obtained from the cross-sectional time use surveys. A typical time-use survey comprises 24 h activity patterns of each respondent for three random, representative days. The data derived from these surveys (1) includes in-home and out-of-home activities classified in four broader groups: each activity (paid work, unpaid work, leisure) and associated travel; (2) includes primary and secondary activities that allow analysis of travel-based multitasking; and (3) provides details about whether the individual performs the activity alone or with other household members, which could be used for joint household travel analysis. Besides time use surveys, the National Survey of Parents, the Family study including surveys and the Experience Sampling Method can provide information about primary and secondary activities [151]. Time spent on activities could additionally be obtained from self-reported longitudinal or cross-sectional epidemiological investigations conducted either online or using face-to-face surveys. Also, travel diary applications can be utilized to obtain the mobility patterns adopted for different in-home and out-of-home activities. In addition, health behavior associated with active travel can be obtained using the Harmonised European Time use Survey [152].

Travel Satisfaction

The travel-related attitudes on various scales such as satisfaction, liking, happiness, enjoyment and subjective valuation of time over travel modes, destination and activity can be qualitatively derived from virtual passive data (including location data) and from smartphone applications (mobile phone-based surveys and locations captured via WiFi, GPS or GSM data). For instance, Susilo and Liotopoulos [153] used various data collection formats, including an online web-based, real time questionnaire using an Android application, and a focus group interviewing method to collect data related to travel satisfaction. In another study, Kwon and Lee [154] adopted a qualitative and quantitative approach to measure the travel satisfaction. Quantitative data is collected using face-to-face interviews, semi-structured interviews and narrative interviews, and qualitative data is derived from longitudinal measurements with 15-day intervals before and after a given trip, leveraging the qualitative dataset collection via an online portal. The data on individual satisfaction about mode usage reflect attitudes towards traffic congestion, road conditions and availability of alternate or public transport services. Such information may be collected by using face-to-face interview surveys and questionnaires [17], leveraging online social platforms [155], analyzing citizen satisfaction data from annual surveys [156], or administering perceived quality surveys [157]. Apart from the readily available data, perceived benefits and burdens can be acquired via administration of validated QoL questionnaires.

Residential choices can be determined by subjective measures, such as satisfaction with neighbourhood attractiveness, comfort, convenience and safety. These data can be obtained from perception and attitudinal surveys administered in face-to-face interviews, via mobile apps or online forms. Factors contributing to eudemonic wellbeing [132] can be modelled across different socioeconomic and sociodemographic groups. For instance, the overall physical health of participants and the daily frequency of feeling rushed could be collected using self-reported questionnaires [158]. Example studies in this area incorporate physical and mental health data using National Household Health Surveys [159] or World Health Surveys [160, 161]. In addition, the Questionnaire for Eudemonic Wellbeing (QEWB) and the Flourishing Scale (FS) [162] can be leveraged.

Discussion

In this chapter we discuss transportation aspects such as transport infrastructure and services, the built environment, transport externalities, travel time use and travel satisfaction, and familiar wellbeing dimensions such as social, community, economic, physical and psychological, which are interdependent and influence each other at various levels. Overall, the transportation aspects affect the wellbeing of diverse social groups in the following ways.

First, poor transport infrastructure and limited mobility services affect mobility and increase transportation costs. This widely affects the community wellbeing of social groups, especially impacting groups with low car access, the older population and poor income groups. Second, built environments that lack local and regional accessibility, transport connectivity, green or public spaces and are subject to disconnected services disrupt social integration and isolate the community. As the social support of the community is threatened, the social wellbeing of vulnerable groups is affected. This further influences social conditions and potentially leads to social problems such as unemployment and crime. Third, transport-related air and noise pollution negatively impacts the health of residents who are constrained by income, mode and residential location, while lack of traffic safety leads to road accidents and affects the overall wellbeing (economic, social, mental and physical health) of residents. Fourth, feelings of being rushed during paid work trips, additional trips to cater for unpaid work demands such as errands, escort and shopping, and the lack of (pure) leisure related trips jointly affect the mental and physical wellbeing of individuals, in particular working women with traditional gender role orientations. Finally, low travel satisfaction due to commuting stress, traffic congestion or delays, a low quality of public transport services, and a lack of interest in cycling or walking affect the physical health and psychological wellbeing of individuals.

The functions of the transportation aspects (transport infrastructure and services, built environment, transport externalities, travel time use and travel satisfaction) overlap one another, while wellbeing, on the other hand, is contextual and multifaceted and varies according to social groups. For instance, if transportation services are not available to all segments of the population equitably, then the problem of social injustice emerges in a society where the vulnerable groups who contribute less to congestion and pollution are those that are most exposed to these problems.

At the societal level , transport policy planning requires the consideration of horizontal equity and vertical equity in transportation, as suggested by many studies [163,164,165,166]. Horizontal equity enables the equal distribution of transport services among groups with the same transport needs, while vertical equity accounts for social differences between groups with different transport needs. For instance, on the horizontal level, the availability and proximity of public transport services improve the transport mobility of all residents in the community, while on the vertical level, reasonable ticket fares in public transport services enhance affordability for low-income groups, seat availability improves accessibility for individuals with physical constraints (wheelchair users, those with impaired sight or older people) and safety enhances women’s mobility.

At the individual level, travel demand measures should consider the intrinsic motivations of individuals to travel. For instance, the first-and-last mile (F&LM) problem and the lack of proximity to services (employment, health and education) may push individuals to increase car trips and long-distance travel. In such cases, transport pricing policies are crucial as they significantly impact travel choices and help in regulating vehicle traffic and managing infrastructure and natural resources (e.g., vehicle taxation in France, Germany and Sweden) [167]. Alternatively, land use policies like transit-oriented development can enhance life satisfaction by enabling ease of access to essential services and promoting safe out-of-home activities. Likewise, strategies for integrating multi-modal trips provide better connectivity and improve individuals’ wellbeing. In addition, policy experimentation to enhance subjective measures (comfort, convenience, safety, reduced stress levels) can encourage usage of public transport. For example, the tele-bus on-demand transport service in Australia and Germany [168, 169] aims to provide a bus service on demand in less populated areas; in this way both individual wellbeing and community wellbeing can be improved.

The study has limitations . First, both wellbeing and transportation are multifaceted and complex, as well as unfolding and evolving over time, and this discussion addresses only part of this complex relationship, captured momentarily. Second, the internal and the external validity of the wellbeing measures extracted from the conceptual framework with respect to travel context remain unknown. Third, although the study conceptually untangles the well-being and travel attributes, the question of a suitable methodological approach and deployment of statistical methods remains. Further, adopting QoL as the primary goal in assessing transport systems and understanding travel behaviors requires more research on the framework, measures and methods, and clear demonstration with case studies and empirical evidence. Finally, the study does not address the effect of recent technological changes in transportation that aim to improve individual QoL; the study focuses on the assessment aspects of transportation’s contribution to individual QoL [170]. Some of the additional technological innovations not considered here include the Quantified Self (QS) technologies including wearables to self-track individual behavioral patterns that may influence their behavioral choices and lifestyles [171, 172]; smart city innovations e.g., automated/electric vehicles, or advanced traffic management systems and urban mobility apps that aim to improve transport mobility [173]. Future research could extend the current study to examine whether these technological innovations in transportation improve wellbeing.

Conclusive Remarks

This chapter puts forward and discusses the hypothesis that transport systems affect wellbeing on the societal level, while travel behavior influences wellbeing on the individual level. The extensive literature method identifies the relevant transportation aspects that impact wellbeing at the individual and societal levels. Based on the extant literature, the conceptual framework TRAWEL is put forward to understand the association between transportation aspects and wellbeing. The determinants of the transport system such as the mobility, affordability, accessibility, connectivity, safety and air quality influence community or social wellbeing, while travel needs and travel attitudes influence the psychological and physical wellbeing of individuals. Such interconnectedness between transportation aspects and wellbeing has not been fully explored elsewhere in transport research to date.

Following the conceptual framework TRAWEL, the review of existing measures and survey procedures suggests the scope for quantifying the impact of transportation aspects on QoL. Finally, the discussion on policy relevance at the societal level suggests an agenda of addressing horizontal and vertical equity in transport system planning, to enable community, social and economic wellbeing. Additionally, it suggests the need for further understanding of the intrinsic motivations of travel needs and travel satisfaction with transport at the individual level, which may be leveraged to enhance individuals’ physical and mental wellbeing. To advance understanding of the impact of transportation on individual wellbeing, future research should broaden the intersectionality between transportation aspects and wellbeing dimensions.