Skip to main content

Comparison of a Vapor Compression Unit with an Absorption Chiller

  • Conference paper
  • First Online:
Advances in Automation III (RusAutoCon 2021)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 857))

Included in the following conference series:

  • 397 Accesses

Abstract

Reliability of electricity supply is the main and most important task of the energy industry in Russia. With the introduction of new equipment, such as gas turbine and combined cycle plants, the problem of effective energy saving becomes an important component. At the moment, it can be solved by increasing the efficiency of generating equipment. This article discusses the possibility of using a vapor compression unit, an absorption refrigeration machine in the cycle of a thermal power plant. The main energy characteristics of the equipment, advantages and disadvantages are considered. A comparison of absorption chiller and vapor compression unit is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marin, G.E., Osipov, B.M., Mendeleev, D.I.: Research on the influence of fuel gas on energy characteristics of a gas turbine. E3S Web Conf. 124, 05063 (2019). https://doi.org/10.1051/e3sconf/201912405063

  2. Mendeleev, D.I., Marin, G.E., Akhmetshin, A.R.: The implementation and use of gas turbines with absorption refrigerating machine in the technological schemes of thermal power plants. In: 2019 International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon, NSPEC Accession Number: 19229407 (2019). https://doi.org/10.1109/FarEastCon.2019.8934431

  3. Marin, G.E., Mendeleev, D.I., Akhmetshin, A.R.: Analysis of changes in the thermophysical parameters of the gas turbine unit working fluid depending on the fuel gas composition. INSPEC Accession Number: 19229280 (2019). https://doi.org/10.1109/FarEastCon.2019.8934021

  4. Bahrami, S., Ghaffari, A., Genrup, M., Thern, M.: Performance comparison between steaminjected gas turbine and combined cycle during frequency drops. Energies 8, 7582–7592 (2015)

    Article  Google Scholar 

  5. Hou, G., Gong, L., Dai, X., Wang, M., Huang, C.: A novel fuzzy model predictive control of a gas turbine in the combined cycle unit. Complexity 2018, 6468517 (2018)

    Article  Google Scholar 

  6. Benrajesh, P., John Rajan, A.: Design and analysis of a two-stage adsorption air chiller. IOP Conf. Ser. Mater. Sci. Eng. 197, 012030 (2017). https://doi.org/10.1088/1757-899X/197/1/012030

    Article  Google Scholar 

  7. Zheng, L.K., Cronly, J., Ubogu, E., Ahmed, I., Zhang, Y., Khandelwal, B.: Experimental investigation on alternative fuel combustion performance using a gas turbine combustor. Appl. Energy 238, 1530–1542 (2019)

    Article  Google Scholar 

  8. Lokini, P., Roshan, D.K., Kushari, A.: Influence of swirl and primary zone airflow rate on the emissions and performance of a liquid-fueled gas turbine combustor. J. Energy Resour. Technol. Trans. ASME 141(6), 9 (2019)

    Article  Google Scholar 

  9. Khudair, O.A., Abass, K.A., Abed, N.S., Ali, K.H., AbdulAziz, S., Shaboot, A.C.: Theoretical investigation for the effect of fuel quality on gas turbine power plants. In: Al-Haitham, I. (ed.) 1st International Scientific Conference on Biology Chemistry Computer Science Mathematics and Physics (IHSCICONF) Minist S.T. 1003: Journal of Physics Conference Series (2017)

    Google Scholar 

  10. Junquera, I., et al.: Home energy management systems and electric vehicles: challenges and opportunities. Renew. Energy Power Qual. J. 1(15), 334–339 (2017)

    Article  Google Scholar 

  11. Soluyanov, Y.I., Fedotov, A.I., Ahmetshin, A.R.: Calculation of electrical loads of residential and public buildings based on actual data. IOP Conf. Ser. Mater. Sci. Eng. 643(1), 012051 (2019). https://doi.org/10.1088/1757-899X/643/1/012051

    Article  Google Scholar 

  12. Vedernikov, A.S., Goldshtein, V.G.: Increase of power efficiency of electric networks with two-chain transmission line. In: 6th International Scientific Symposium on Electrical Power Engineering, ELEKTROENERGETIKA, pp. 231–233 (2011)

    Google Scholar 

  13. Gracheva, E., Alimova, A.: Calculating probabilityof faultless work of shop nets with the help of coefficients of ratio. In: 2019 International Russian Automation Conference, RusAutoCon, INSPEC, 19090885 (2019)

    Google Scholar 

  14. Alajmi, A.E.S.E.T., Adam, N.M., Hairuddin, A.A., Abdullah, L.C.: Fuel atomization in gas turbines: a review of novel technology. Int. J. Energy Res. 43(8), 3166–3318 (2019)

    Article  Google Scholar 

  15. Taufan, A., Djubaedah, E., Manga, A., Nasruddin, A.: Experimental performance of adsorption chiller with fin and tube heat exchanger. In: AIP Conference Proceedings, vol. 2001, p. 020012 (2018)

    Google Scholar 

  16. Mendeleev, D.I., Galitskii, Y.Y., Marin, G.E., Akhmetshin, A.R.: Study of the work and efficiency improvement of combined-cycle gas turbine plants. E3S Web Conf. 124, 05061 (2019). https://doi.org/10.1051/e3sconf/201912405061

  17. Akhmetshin, A., Marin, G., Mendeleev, D.: Modeling of asynchronous motor operation modes for the correct selection of voltage regulation devices. E3S Web Conf. 178, 01015 (2020). https://doi.org/10.1051/e3sconf/202017801015

  18. Nurin, F.N., Amano, R.S.: Review of gas turbine internal cooling improvement technology. J. Energy Res. Technol. 143(8), 080801 (2021). https://doi.org/10.1115/1.4048865

    Article  Google Scholar 

  19. Gofman, A.V., Vedernikov, A.S., Vedernikova, E.S.: Increasing the accuracy of the short-term and operational prediction of the load of a power system using an artificial neural network. Power Technol. Eng. 46(5), 410–415 (2013). https://doi.org/10.1007/s10749-013-0370-0

    Article  Google Scholar 

  20. Addabbo, T., et al.: Ion sensor measurement systems: application for combustion monitoring in gas turbines. IEEE Trans. Instrum. Meas. 69(4), 1474–1483 (2020). https://doi.org/10.1109/TIM.2019.2961483

    Article  Google Scholar 

  21. Akhmetshin, A., Mendeleev, D., Marin, G.: Improvement of electricity quality indicators in electric networks with voltage of 0.4–10 kV. In: 2020 International Russian Automation Conference, RusAutoCon 2020, pp. 454–458, INSPEC Accession Number: 20007605 (2020). https://doi.org/10.1109/RusAutoCon49822.2020.9208158

  22. Rigo-Mariani, R., Zhang, C., Romagnoli, A., Kraft, M., Ling, K.V., MacIejowski, J.: A combined cycle gas turbine model for heat and power distribution considering grid constraints. IEEE Trans. Sustain. Energy 11(1), 448–456 (2020). https://doi.org/10.1109/TSTE.2019.2894793

  23. Nazarychev, S.A., Akhmetshin, A.R., Gaponenko, S.O.: Full compensation of reactive power in electric networks 0.4–10kV. In: 11th Scientific Technical Conference on Low Temperature Plasma during the Deposition of Functional Coatings, Journal of Physics: Conference Series, vol. 1588, no. 1, p. 012036 (2020). https://doi.org/10.1088/1742-6596/1588/1/012036

  24. Pilarsky, S., Stanishevsky, M., Villeneuve, F., Varro, D.: On artificial intelligence for modeling and design. Space exploration in the design of gas turbines. 22nd ACM/IEEE 2019 International Conference on Model Driven Design Languages and System Companions, MODELS -C 2019, Germany, 8904682, pp. 170–174 (2019). https://doi.org/10.1109/MODELS-C.2019.00029

  25. Soluyanov, Y.I., Fedotov, A.I., Soluyanov, D.Y., Akhmetshin, A.R.: Experimental research of electrical loads in residential and public buildings. IOP Conf. Ser. Mater. Sci. Eng. 860(1), 012026 (2020). https://doi.org/10.1088/1757-899X/860/1/012026

    Article  Google Scholar 

  26. Liu, Y., Banerjee, A., Hanachi, H., Kumar, A.: Data-driven model selection study for long-term gas turbine degradation of gas turbines. In: 2019 IEEE International Conference on Health Prediction and Management, ICPHM 2019, Art. no 88194332019, United States (2019). https://doi.org/10.1109/ICPHM.2019.8819433

  27. Gaponenko, S.O., Kondratiev, A.E., Shakurova, R.Z.: Improving the efficiency of energy complexes and heat supply systems using mathematical modeling methods at the operational stage. In: International Scientific and Technical Conference Smart Energy Systems, E3S Web of Conferences, vol. 124, p. 05029 (2019). https://doi.org/10.1051/e3sconf/201912405029

  28. Gaponenko, S.O., Kondratiev, A.E., Tazeev, I.R.: Assessment of natural oscillation frequencies of rotor for development of hard-bearing balancing machine. In: Radionov, A.A., Kravchenko, O.A., Guzeev, V.I., Rozhdestvenskiy, Y.V. (eds.) ICIE 2019. LNME, pp. 249–257. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22041-9_29

    Chapter  Google Scholar 

  29. Diaz-Herrera, P.R., Alcaraz-Calderon, A.M., Gonzalez-Diaz, M.O., Gonzalez-Diaz, A.: Capture level design for a natural gas combined cycle with post-combustion CO2 capture using novel configurations. Energy 193, 116769 (2020). https://doi.org/10.1016/j.energy.2019.116769

    Article  Google Scholar 

  30. Diaz-Herrera, P.R., Ascanio, G., Romero-Martinez, A., Alcaraz-Calderon, A.M., Gonzalez-Diaz, A.: Theoretical comparison between post-combustion carbon capture technology and the use of blue and green H2 in existing natural gas combined cycles as CO2 mitigation strategies: a study under the context of Mexican clean energy regulation. Int. J. Hydrogen Energy 46(2), 2729–2754 (2021). https://doi.org/10.1016/j.ijhydene.2020.10.076

    Article  Google Scholar 

  31. Bonfillo, A., Cachacarne, S., Invernizzi, M., Lanzarotto, D., Palmieri, A., Procopio, R.: Sliding mode control approach for gas turbine power generators. IEEE Trans. Energy Convers. 34(2), 921–932 (2019). https://doi.org/10.1109/TEC.2018.2879688

    Article  Google Scholar 

  32. Ravikumar, C.G., Bosley, B., Clarke, T., Garcia, J.: Generation control system: Using isochronous load sharing principles with gas and steam turbine generators. IEEE Ind. Appl. Mag. 25(2), 36–44 (2019). https://doi.org/10.1109/MIAS.2018.2875127

    Article  Google Scholar 

  33. Islamova, S.I., Timofeeva, S.S., Ermolaev, D.V., Khamatgalimov, A.R.: Kinetic analysis of the thermal decomposition of lowland and high-moor peats. Solid Fuel Chem. 54(4), 154–162 (2020). https://doi.org/10.3103/S0361521920030040

    Article  Google Scholar 

  34. Goldstein, V., Shishkov, E., Vedernikov, A., Kolcun, M.: Calculation of steady state of multichain overhead power transmission line in phase. In: 7th International Scientific Symposium on Electrical Power Engineering, ELEKTROENERGETIKA, pp. 145–148 (2013)

    Google Scholar 

  35. Karaeva, J.V., Timofeeva, S.S., Bashkirov, V.N., Bulygina, K.S.: Thermochemical processing of digestate from biogas plant for recycling dairy manure and biomass. Biomass Convers. Biorefinery 1–11 (2020). https://doi.org/10.1007/s13399-020-01138-6

  36. Goldshteyn, V.G., Vedernikov, A.S., Tanaev, N.V.: Mathematical models of short-circuit and break modes in electric networks with multi-circuit overhead lines. In: 2020 International Ural Conference on Electrical Power Engineering, UralCon, Art. no. 9216271, pp. 304–312 (2020). https://doi.org/10.1109/UralCon49858.2020.9216271

  37. Suslov, K., et al.: Development of the methodological basis of the simulation modelling of the multi-energy systems. E3S Web Conf. 124, 01049 (2019). https://doi.org/10.1051/e3sconf/201912401049

  38. Erickson, D.K., Anand, G., Makar, E.: Absorption refrigeration cycle, turbine inlet air conditioning. Int. J. Air Conditioning Refrig. 23(1), 1550003 (2015). https://doi.org/10.1142/S2010132515500030

    Article  Google Scholar 

  39. Subbarao, R., Sarat, K.S.: Gas turbine unit analysis for distributed power generation alongside heating, cooling and air conditioning. J. Distrib. Gener. Altern. Energy 32(2), 56–72 (2017). https://doi.org/10.1080/21563306.2017.11869109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maslov, I., Maslova, G., Novoselova, M. (2022). Comparison of a Vapor Compression Unit with an Absorption Chiller. In: Radionov, A.A., Gasiyarov, V.R. (eds) Advances in Automation III. RusAutoCon 2021. Lecture Notes in Electrical Engineering, vol 857. Springer, Cham. https://doi.org/10.1007/978-3-030-94202-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94202-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94201-4

  • Online ISBN: 978-3-030-94202-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics