Skip to main content

Cost Reduction in Smart Grid Considering Greenhouse Gas Emissions Using Genetic Algorithm

  • Conference paper
  • First Online:
Advanced Technologies for Humanity (ICATH 2021)

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 110))

Included in the following conference series:

  • 749 Accesses

Abstract

The indiscriminate nature of renewable energy sources does not help the stability of the Micro Grid (MG), especially the power balance: equilibrium of produced and consumed power. MG uses one or multiple sources of renewable energy, even if it is connected to the electrical main grid the need to add auxiliary sources is explained due to some unexpected main grid power outages. In this setting, this paper proposes the management of the energy production in the MG considering: (i) consumption and weather predictions, and the main grid fees (ii) charging mode strategy of the energy storage system (ESS); (iii) energy buying or selling decision from/to the main grid. The objectives of this paper are: (i) reducing the daily energy bill of the MG; (ii) optimizing CO\(_2\) emissions. This management is done using a Genetic Algorithm which is an evolutionary computation, and the obtained results are compared to a conventional management system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hatziargyriou, N.: Microgrids: Architectures and Control, p. 3 (2014)

    Google Scholar 

  2. Fang, X., Misra, S., Xue, G., Yang, D.: Smart grid–the new and improved power grid: a survey. IEEE Commun. Surv. Tutor. 14(4), 944–980 (2012)

    Article  Google Scholar 

  3. Hledik, R.: How green is the smart grid? Electr. J. 22(3), 29–41 (2009)

    Google Scholar 

  4. Momoh, J.A.: Smart grid design for efficient and flexible power grids operation and control. In: Proceedings of the IEEE/PES Power Systems Conference and Exposition (PSCE), pp. 1–8. IEEE (2009)

    Google Scholar 

  5. Boulal, A., Chakir, H.E., Drissi, M., Griguer, H., Ouadi, H.: Optimal management of energy flows in a multi-source grid. In: 2018 Renewable Energies, Power Systems & Green Inclusive Economy (REPS-GIE), Casablanca, pp. 1–6, April 2018

    Google Scholar 

  6. Huang, P., Xu, T., Sun, Y.: A genetic algorithm based dynamic pricing for improving bi-directional interactions with reduced power imbalance. Energy Build. 199, 275–286 (2019)

    Article  Google Scholar 

  7. Lei, G., Song, H., Rodriguez, D.: Power generation cost minimization of the grid-connected hybrid renewable energy system through optimal sizing using the modified seagull optimization technique. Energy Rep. 6, 3365–3376 (2020)

    Article  Google Scholar 

  8. Barakat, S., Ibrahim, H., Elbaset, A.A.: Multi-objective optimization of grid-connected PV-wind hybrid system considering reliability, cost, and environmental aspects. Sustain. Cities Soc. 60, 102178 (2020)

    Google Scholar 

  9. Sharma, S., Bhattacharjee, S., Bhattacharya, A.: Operation cost minimization of a micro-grid using Quasi-oppositional swine influenza model based optimization with quarantine. Ain Shams Eng. J. 9(1), 45–63 (2018)

    Article  Google Scholar 

  10. Wei, L.: Energy drive and management of smart grids with high penetration of renewable sources of wind unit and solar panel, p. 7 (2021)

    Google Scholar 

  11. Chamandoust, H.: Day-ahead scheduling problem of smart micro-grid with high penetration of wind energy and demand side management strategies. Sustain. Energy Technol. Assess. 12 (2020)

    Google Scholar 

  12. Khalil, M.I., Jhanjhi, N.Z., Humayun, M., Sivanesan, S., Masud, M., Hossain, M.S.: Hybrid smart grid with sustainable energy efficient resources for smart cities. Sustain. Energy Technol. Assess. 46, 101211 (2021)

    Google Scholar 

  13. Azaroual, M., Ouassaid, M., Maaroufi, M.: Optimal control for energy dispatch of a smart grid tied PV-wind-battery hybrid power system. In: 2019 Third International Conference on Intelligent Computing in Data Sciences (ICDS), pp. 1–7, October 2019

    Google Scholar 

  14. Ashok, S.: Optimised model for community-based hybrid energy system. Renew. Energy 32, 1155–1164 (2007)

    Article  Google Scholar 

  15. Canova, A., Chicco, G., Genon, G., Mancarella, P.: Emission characterization and evaluation of natural gas-fueled cogeneration microturbines and internal combustion engines. Energy Convers. Manag. 49, 2900–2909 (2008)

    Article  Google Scholar 

  16. Keshta, H.E., Malik, O.P., Saied, E.M., Bendary, F.M., Ali, A.A.: Energy management system for two islanded interconnected micro-grids using advanced evolutionary algorithms. Electr. Power Syst. Res. 192, 106958 (2021)

    Google Scholar 

  17. Boulal, A., Chakir, H.E., Drissi, M., Ouadi, H.: Energy bill reduction by optimizing both active and reactive power in an electrical microgrid. IREE 15(6), 456 (2020)

    Article  Google Scholar 

  18. Boicea, A., Chicco, G., Mancarella, P.: Optimal operation of a microturbine cluster with partial-load efficiency and emission characterization. In: 2009 IEEE Bucharest PowerTech, pp. 1–8 (2009)

    Google Scholar 

  19. Kanchev, H.: Gestion des flux énergétiques dans un système hybride de sources d’énergie renouvelable: Optimisation de la planification opérationnelle et ajustement d’un micro réseau électrique urbain, Thesis 2014, Central School of Lille, Technical University of Sofia (2014)

    Google Scholar 

  20. Delaille, A.: Development of New State-of-Charge and State-of-Health Criteria for Batteries Used in Photovoltaic Systems, University Pierre et Marie Curie, Ph.D. Report (French) (2006)

    Google Scholar 

  21. Riffonneau, Y., Bacha, S., Barruel, F., Ploix, S.: Optimal power flow management for grid connected PV systems with batteries. IEEE Trans. Sustain. Energy 2(3), 309–320 (2011)

    Article  Google Scholar 

  22. http://www.one.org.ma/

  23. Shine, K.P., Fuglestvedt, J.S., Hailemariam, K., Stuber, N.: Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Climatic Change 68, 281–302 (2005)

    Article  Google Scholar 

  24. International Panel on climate change. “Climate change 2001: Working group I: The scientific basis”, Section 4, table 6.7, IPCC 2007

    Google Scholar 

  25. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge (1992)

    Book  Google Scholar 

  26. Yan, C., Wang, F., Pan, Y., Shan, K., Kosonen, R.: A multi-timescale cold storage system within energy flexible buildings for power balance management of smart grids. Renew. Energy 161, 626–634 (2020)

    Article  Google Scholar 

  27. Shi, Z., et al.: Artificial intelligence techniques for stability analysis and control in smart grids: methodologies, applications, challenges and future directions. Appl. Energy 278, 115733 (2020)

    Google Scholar 

  28. Tan, K.M., Babu, T.S., Ramachandaramurthy, V.K., Kasinathan, P., Solanki, S.G., Raveendran, S.K.: Empowering smart grid: a comprehensive review of energy storage technology and application with renewable energy integration. J. Energy Storage 39, 102591 (2021)

    Google Scholar 

  29. Crespo Del Granado, P., Pang, Z., Wallace, S.W.: Synergy of smart grids and hybrid distributed generation on the value of energy storage. Appl. Energy 170, 476–488 (2016)

    Article  Google Scholar 

  30. Rigo-Mariani, R., Sareni, B., Roboam, X., Turpin, C.: Optimal power dispatching strategies in smart-microgrids with storage. Renew. Sustain. Energy Rev. 40, 649–658 (2014)

    Article  Google Scholar 

  31. Pazouki, S., Haghiafm, M.R.: Market based operation of a hybrid system including wind turbine, solar cells, storage device and interruptable load. In: 18th Electric Power Distribution Conference, pp. 1–7 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zahraoui, F.Z., Chakir, H.E., Ouadi, H. (2022). Cost Reduction in Smart Grid Considering Greenhouse Gas Emissions Using Genetic Algorithm. In: Saidi, R., El Bhiri, B., Maleh, Y., Mosallam, A., Essaaidi, M. (eds) Advanced Technologies for Humanity. ICATH 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-030-94188-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94188-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94187-1

  • Online ISBN: 978-3-030-94188-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics