Skip to main content

Wet Synthesis Methods of Shape-Memory Polymer Composites

  • Chapter
  • First Online:
Shape Memory Composites Based on Polymers and Metals for 4D Printing

Abstract

Shape-memory polymer composites (SMPCs) are active smart materials which are having the ability to return to their original shape from their deformed state or vice versa under exterior stimulus. They are having dual-shape capability. These materials have fascinated the researchers as a result of their wide range of prospective applications in various areas like aerospace, biomedical equipment, morphing structures, deployable structures, biomaterials, smart textiles, 4D printing of active origami structures, fabrics, and self-healing composite systems. A comprehensive description of the wet synthesis techniques used in the preparation of shape-memory polymer composites like in situ polymerization, co-precipitation, melt mixing, solution mixing, sol–gel process, and electrospinning are presented in this chapter along with their advantages and disadvantages. Compared with shape-memory alloys (SMAs), the shape-memory polymer composites are having a substantial share of active smart materials research just because of the following advantages such as manufacturability, huge shape deformability, great recoverability, biodegradability, and simply tailorable glass transition temperature (Tg).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng H, Liu J, Zhao Y, Hu C, Zhang Z, Chen N (2013) Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Angewandte Chemie InternationalEdition 52:10482–10486

    Google Scholar 

  2. Chan BQY, Low ZWK, Heng SJW, Chan SY, Owh C, Loh XJ (2016) Recentadvances in shape-memory soft materials for biomedical applications. ACS Appl Mater Int 8(16):10070–10087

    Google Scholar 

  3. Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites:stimulus methods and applications. Progr Mater Sci 56(7):1077–1135

    Google Scholar 

  4. Hu J, Zhu Y, Huang H, Lu J (2012) Recent advances in shape-memory polymers:structure, mechanism, functionality, modeling and applications. Prog Polymer Sci 37(12):1720–1763

    Google Scholar 

  5. Meng QH, Hu JL, Zhu Y, Lu J, Liu Y (2007) Morphology, phase separation, thermal and mechanical property differences of shape-memory fibres prepared by different spinning methods. Smart Mater Struct 16:1192–1197

    Google Scholar 

  6. Meng QH, Hu JL, Yeung LY (2007) An electro-active shape-memory fibre by incorporating multi-walled carbon nanotubes. Smart Mater Struct 16:830–836

    Google Scholar 

  7. Lendlein A, Jiang H, Jünger O, Langer R (2005) Light-induced shape-memorypolymers 434(7035):879–882

    Google Scholar 

  8. Lan T, Kaviratna PD, Pinnavaia TJ (1995) Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites. Chem Mater 7:2144–2150

    Google Scholar 

  9. Wang Z, Pinnavaia TJ (1998) Nanolayer reinforcement of elastomeric polyurethane. Chem Mater 10:3769–3771

    Google Scholar 

  10. Zilg C, Thomann R, Mulhaupt R, Finter J (1999) Polyurethane nanocomposites containing laminated anisotropic nanoparticles derived from organophilic layered silicates. Adv Mater 11:49–51

    Google Scholar 

  11. Ke Y, Long C, Qi Z (1999) Crystallization, propertiesand crystal and nanoscale morphology of PET clay nanocomposites. J Appl Polymer 71:1139–1146

    Google Scholar 

  12. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Google Scholar 

  13. Moses JC, Gangrade A, Mandal BB (2019) Carbon nanotubes and their polymer nanocomposites. In: Karak N (ed) Nanomaterials and polymer nanocomposites, pp 145–175

    Google Scholar 

  14. Khan W, Sharma R, Saini P (2016) Carbon nanotube-based polymer composites: synthesis, properties and applications. In: Berber M, Hafez IH (eds) Carbon nanotubes-current progress of their polymer composites. IntechOpen, London, pp 1–45

    Google Scholar 

  15. Sahoo NG, Rana S, Cho JW, Li L, Cha SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polymer Sci 35:837–867

    Google Scholar 

  16. Saini P, Choudhary V (2013) Enhanced electromagnetic interference shielding effective-ness of polyaniline functionalized carbon nanotubes filled polystyrene composites. J Nanopart Res 15:1415–1422

    Google Scholar 

  17. Saini P (2013) Electrical properties and electromagnetic interference shielding response of electrically conducting thermosetting nanocomposites. In: Mittal V (ed) Thermoset nanocomposites. Wiley-VCH Verlag, Hoboken, pp 211–237

    Google Scholar 

  18. Ari GA, Aydin I (2008) Nanocomposites prepared by solution blending: microstructure and mechanical properties. J Macromol Sci Part B Phys 47:260–267

    Google Scholar 

  19. Barrett R, Taylor R, Keller P, Codell D, Adams L (2007) Deployable reflectors for small satellites. AIAA 1–6

    Google Scholar 

  20. Mallakpour S, Naghdi M (2018) Polymer/SiO2 nanocomposites: Production and applications. Prog Mater Sci 34:118–124

    Google Scholar 

  21. Passador FR, Ruvolo-Filho A, Pessan LA (2017) Nanocomposites of polymer matrices and lamellar clays. In: Nanostructures. 1st edn. Elsevier, pp 187–207

    Google Scholar 

  22. Mistretta MC, Morreale M, La Mantia FP (2014) Thermomechanical degradation of polyethylene/polyamide 6 blend-clay nanocomposites. Polym Degrad Stab 99:61–67

    Google Scholar 

  23. Fornes TD, Yoon PJ, Keskkula H, Paul DR (2001) Nylon 6 nanocomposites: the effect of matrix molecular weight. Polymer 42:9929–9940

    Google Scholar 

  24. Isobe H, Kaneko K (1999) Porous silica particles prepared from silicon tetrachloride using ultrasonic spray method. J Colloid Interface Sci 212:234–241

    Google Scholar 

  25. Fawaz J, Mittal V (2014) Synthesis of polymer nanocomposites: review of various techniques. In: Synthesis techniques for polymer nanocomposites, vol 245. WileyVCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1–30

    Google Scholar 

  26. Lu AH, Salabas EL, Schüth F (2007) Angew Chem Int Ed. 46:1222–1244

    Google Scholar 

  27. Rodriguez Carvajel J (1995) fullproof version 3.0 Laboratorie Leon Brillioun. CEACNRS, 24:256–263

    Google Scholar 

  28. Schroder DK (1990) Semiconductor material and device characterization. Wiley, New York, pp 361–368

    Google Scholar 

  29. Valdes LB (1954) Proc IRE 42:420–429

    Google Scholar 

  30. Jones B (1993) Phys Teach 31:48–56

    Google Scholar 

  31. Hummel RE (1993) Electronic properties of materials, vol 43. Springer, New York, pp 182–188.

    Google Scholar 

  32. Hiavacek V, Puszynski J (1996) Chemical engineering aspects of advanced ceramic materials. Ind Eng Chem Res 35:349–377

    Google Scholar 

  33. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, Boston

    Google Scholar 

  34. Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry. Wiley, New York

    Google Scholar 

  35. Hench LL, West JK (1990) Chem Rev 90:33

    Google Scholar 

  36. Deng Z, Wang J, Wei J, Shen J, Zhou B, Chen L (2000) J Sol Gel Sci Technol 19:677–680

    Google Scholar 

  37. Venkastewara Rao A, Bhagat SD, Hirashima H, Pajonk GM (2006) J Colloid Interface Sci 300:279–285

    Google Scholar 

  38. El Rassy H, Buisson P, Bouali B, Perrard A, Pierre AC (2003) Langmuir 19:358–363

    Google Scholar 

  39. Harrels JH, Ebina T, Tsubo N, Stucky G (2002) J Non-Cryst Solids 298:241–251

    Google Scholar 

  40. Allie C, Pirard R, Lechloux AJ, Pirard JP (1999) J Non-Cryst Solids 246:216–228

    Google Scholar 

  41. Anton F (1934) Process and apparatus for preparing artificial threads, US 1975504, United States

    Google Scholar 

  42. Ko F, Wan Y (2014) Introduction to nanofiber materials. Cambridge University Press, p 39

    Google Scholar 

  43. Abdel-Hady F, Alzahrany A, Hamed M (2011) Experimental validation of upward electrospinning process. ISRN Nanotechnol 85:1317–1324

    Google Scholar 

  44. Frenot A, Chronakis IS (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8:64–75

    Google Scholar 

  45. Baumgarten PK (1971) Electrostatic spinning of acrylic microfibers. J Colloid Interface Sci. 36:71–79

    Google Scholar 

  46. Ramakrishna S, Jose R, Archana PS (2010) Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine. J Mater Sci 45:6283–6312

    Google Scholar 

  47. Dao TD, Ha NS, Goo NS, Yu W-R (2018) Design, fabrication, and bending test of shape-memory polymer composite hinges for space deployable structures. J Intell Mater Syst Struct 29(8):1560–1574

    Google Scholar 

  48. Liu T (2018) Integrative hinge based on shape-memory polymer composites: material, design, properties, and application. Compos Struct 206:164–176

    Google Scholar 

  49. Li F (2016) Modal analyses of deployable truss structures based on shape-memory polymer composites. Int J Appl Mech 8(7):1640009

    Google Scholar 

  50. Zhao W, Liu L, Zhang F, Leng J, Liu Y (2019) Shape-memory polymers and their composites in biomedical applications. Mater Sci Eng C 97:864–883

    Google Scholar 

  51. Xie H (2018) Biodegradable near-infrared-photo-responsive shape-memory implants based on black phosphorus nanofillers. Biomaterials 164:11–21

    Google Scholar 

  52. Chakraborty JN, Dhaka PK, Sethi AV, Arif M (2017) Technology and application of shape-memory polymers in textiles. Res J Text Appar 21(2):86–100

    Google Scholar 

  53. Ji F (2006) Smart polymer fibers with shape-memory effect. Smart Mater Struct 15:1547–1554

    Google Scholar 

  54. Hu J, Mondal S (2006) Study of shape-memory polymer films for breathable textiles. In: Mattila HR (ed) Intelligent textiles and clothing. Woodhead Publishing, Sawston, pp 143–164

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhogi, A., Rajani, T. (2022). Wet Synthesis Methods of Shape-Memory Polymer Composites. In: Maurya, M.R., Sadasivuni, K.K., Cabibihan, JJ., Ahmad, S., Kazim, S. (eds) Shape Memory Composites Based on Polymers and Metals for 4D Printing. Springer, Cham. https://doi.org/10.1007/978-3-030-94114-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94114-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94113-0

  • Online ISBN: 978-3-030-94114-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics