Skip to main content

Metallic Trace Elements in Soil: Persistence, Toxicity, Bioaccumulation, and Biological Remediation

  • Chapter
  • First Online:
Nutrition and Human Health

Abstract

Metallic trace elements are toxic substances, nonbiodegradable, highly soluble, easily bioaccumulate, and persist for long periods in different spheres of the environment. These properties give them the ability to accumulate in the food chains and induce multiple health damage, even at lower levels of exposures. Consequently, there is an urgent need to develop remediation technologies of these elements to protect soil, plants, animals as well as human health. Physical and chemical remediation technologies have the drawback of being often expensive and difficult to implement and release additional waste to the environment.

Phytoremediation and immobilization techniques are frequently listed among the best demonstrated available technologies for remediation of metal-contaminated soils. This chapter comprehensively reviews the different aspects of metallic trace elements as hazardous materials with special focus on their toxicity, persistence, bioaccumulation environmental issues, health risks, and remediation technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adriano DC (1986) Trace elements in terrestrial environment. Springer Verlage, New York

    Google Scholar 

  • Adriano DC (2001) Ecological and health risks of metals. Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals, 2nd edn. Springer-Verlag, New York, pp 134–165

    Google Scholar 

  • Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural attenuation in environmental cleanup. Geoderma 122:121–142. https://doi.org/10.1016/j.geoderma.2004.01.003

    Article  CAS  Google Scholar 

  • Ahmadpour P, Ahmadpour F, Mahmud TMM, Abdu A, Soleimani M, Hosseini Tayefeh F (2012) Phytoremediation of heavy metals: a green technology. Afr J Biotechnol 11(76):14036–14043

    CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075

    Article  CAS  Google Scholar 

  • Alloway B (1995) Heavy metals in soils, Blackie Academic and Professional. 2nd Ed.

    Google Scholar 

  • Alvarez-Ayuso E, Garcia-Sanchez A (2003) Sepiolite as a feasible soil additive for the immobilization of cadmium and zinc. Sci Total Environ 305(1–3):1–12

    CAS  Google Scholar 

  • Avila M, Perez G, Esshaimi M, Mandi L, Ouazzani N, Brianso JL, Valiente M (2012) Heavy metal contamination and mobility at the mine area of draa lasfar (Morocco). Open Environ Pollut Toxicol J 3(suppl 1-M2):2–12

    CAS  Google Scholar 

  • Baize D (2009) Éléments traces dans les sols. Fonds géochimiques, fonds pédogéochimiques naturels et teneurs agricoles habituelles: définitions et utilités. Courrier de l’Environnement de l’INRA 57:63–72

    Google Scholar 

  • Barkay T, Schaefer J (2001) Metal and radionuclide bioremediation: issues, considerations and potentials. Curr Opin Microbiol 4:318–323

    CAS  Google Scholar 

  • Baycu G, Tolunay D, Ozden H, Csatari I, Karadag S, Agba T, Rognes SE (2014) An abandoned copper mining site in Cyprus and assessment of metal concentrations in plants and soil. Int J Phytoremediation 17(7):622–631

    Google Scholar 

  • Berti WR, Cunningham SC (2000) Phytostabilization of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley and Sons, New York, pp 71–88

    Google Scholar 

  • Bolan N, Kunhikrishnanc A, Thangarajana JK, Jinhee Parke J, Makinof T, Mary Beth Kirkhamg MB, Scheckel K (2014) Review remediation of heavy metal (loid)s contaminated soils-to mobilize or to immobilize. J Hazard Mater 266:141–166

    CAS  Google Scholar 

  • Boularbah A, Schwartz C, Bitton G, Aboudrar W, Ouhammou A, Morel JL (2006) Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere 63:811–817

    CAS  Google Scholar 

  • Bourrelier PH, Berthelin J (1998) Contamination des sols par les éléments traces: les risques et leur gestion. Rapport n°42 de l’académie des sciences

    Google Scholar 

  • Brooks RR (1998) Geobotany and hyperaccumulators. In: Plants that Hyperaccumulate Heavy Metals: their Role in Phytoremediation, Microbiology, Archaeology, Mineral Exploration and Phytomining (ed.R. R. Brooks), 55–94. CAB International, Oxon, UK.

    Google Scholar 

  • Brown S, Chaney R L, Hallfrisch J, Ryan J, Berti W (2003) Use of soil amendments to reduce the bioavailability of lead, zinc, and cadmium in situ. 7th Intern. Conf. on the Biogeochem. Of Trace Elements, 14–19 June, Uppsala (Sweden)

    Google Scholar 

  • Calderon J, Ortiz-Perez D, Yanez L, Diaz-Barriga F (2003) Human exposure to metals. Pathways of exposure, biomarkers of effect, and host factors. Ecotoxicol Environ Saf 56:93–103

    CAS  Google Scholar 

  • Callender E (2003) Heavy metals in the environment-historical trends. In: Lollar BS (ed) Environmental geochemistry. Treatise on Geochemistry. Elservier-Pergamon, Oxford, pp 67–105

    Google Scholar 

  • Castaldi P, Santona L, Melis P (2005) Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere 60(3):365–371

    CAS  Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J. Environ. Qual. 36, 1429–1443

    Google Scholar 

  • Das K, Das S, Dhundasi S (2008) Nickel, its adverse health effects, and oxidative stress. Indian J Med Res 128:412–425

    CAS  Google Scholar 

  • Douay F, Roussel H, Pruvot C, Waterlot C (2008) Impact of a smelter close on metal contents of wheat cultivated in the neighbourhood. Environ Sci Pollut Res 15:162–169

    CAS  Google Scholar 

  • Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Eur J Miner Process Environ Prot 3:58–66

    Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18

    Google Scholar 

  • Gibbs PA, Chambers BJ, Chaudri AM, McGrath SP, Carlton-Smith CH, Bacon JR, Campbell C, Aitken MN (2006) Initial results from a long-term, multi-site field study of the effects on soil fertility and microbial activity of sludge cakes containing heavy metals. Soil Use Manage 22:11–21

    Google Scholar 

  • Gulati K, Banerjee B, Bala Lall S, Ray A (2010) Effects of diesel exhaust, heavy metals and pesticides on various organ systems: possible mechanisms and strategies for prevention and treatment. Indian J Exp Biol 48:710–721

    CAS  Google Scholar 

  • Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266

    Google Scholar 

  • Hassett JJ, Miller JE (1977) Uptake of lead by corn from roadside soil samples. Commun SoilSCi Plant Anal 8:49--55

    Google Scholar 

  • Hinsinger P (2001) Bioavailability of trace elements as related to root-induced chemical changes in the rhizosphere. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere. CRC Press LCC, Boca Raton, pp 25–41

    Google Scholar 

  • Hooda PS (2010) Trace elements in soils. Kingston University, London

    Google Scholar 

  • Hossain MA, Piyatida P, Teixeira da Silva JA, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot:37

    Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Khan S, Rehman S, Khan AZ, et al. (2010) Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. Ecotox Environ Safe 73:1820–7

    Google Scholar 

  • Kumpiene J, Lagerkvist A, Muarice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments. A review. Waste Manag 28:215–225

    CAS  Google Scholar 

  • Laperche V, Dictor MC, Clozel-Leloup BB, Baranger PH (2004) Guide méthodologique du plomb, applique à la gestion des sites et sols pollués. BRGM/RP-52881 FR. Étude réalisée dans le cadre des actions de Service public du BRGM 2003-POLA06

    Google Scholar 

  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121

    CAS  Google Scholar 

  • Melgar-Ramırez R, Gonzalez V, Sanchez JA, Garcıa I (2012) Effects of application of organic and inorganic wastes for restoration of sulphurmine soil. Water Air Soil Pollut 223:6123–6131

    Google Scholar 

  • Mench M, Vangronsveld J, Lepp NW, Ruttens A, Bleeker P, Geebelen W (2003) Soilamendments for attenuating trace element exposure. In: Hamon R, Laughling MM (eds) Natural attenuation of trace elementavailability in soils. CRC Press, Boca Raton

    Google Scholar 

  • Midhat L, Ouazzani N, Hejjaj A, Bayo J, Mandi L (2018) Phytostabilization of polymetallic contaminated soil using Medicago sativa L. in combination with powdered marble: sustainable rehabilitation. Int J Phytoremediation 20(8):764–772. https://doi.org/10.1080/15226514.2018.1425665

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60(1–4):193–207

    Google Scholar 

  • Newman MC, Jagoe CH (1994) In: Heamelink JM, Landrum PF, Bergman HL, Benson WH (eds) Ligands and the bioavailability of metals in aquatic environments. Bioavailability: physical, chemical and biological interactions. Lewis Publishers, Boca Raton

    Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988(333):1341–1139

    Google Scholar 

  • Odjegba VJ, Fasidi IO (2007) Phytoremediation of heavy metals by Eichhornia crassipes. Environmentalist 27:349–355

    Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126

    CAS  Google Scholar 

  • Perez-de-Mora A, Madejon E, Burgos P, Cabrera F (2006) Trace elements availability and plant growth in a mine-spill contaminated 610 soil under assisted natural remediation. Sci Total Environ 363:28–37. https://doi.org/10.1016/j.scitotenv.2005.10.015

    Article  CAS  Google Scholar 

  • Perez-Esteban J, Escolastico C, Masaguer A, Moliner A (2012) Effects of sheep and horse manure and pine bark amendments on metal distribution and chemical properties of contaminated mine soils. Eur J Soil Sci 63:733–742

    CAS  Google Scholar 

  • Perminova K, Hatfield (2005) Remediation chemistry of humic substances: theory andimplications for technology. In: Perminova IV, Hertkorn N, Hatfield K (eds) Use of humic substances to remediate polluted environments: from theory to practice, NATO Science Series: IV. Earth and Environmental Sciences, vol. 52. Springer, Dordrecht, pp 3–36

    Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39. Planquart

    CAS  Google Scholar 

  • Ramade F (1974) Eléments d'écologie appliquée. Action de I'homme sur la biosphére. Ediscience, McGraw-Hill, Paris

    Google Scholar 

  • Rieuwerts J, Farago M, Cikrt M, Bencko V (1999) Heavy metal concentrations in and around households near a secondary lead smelter. Environ Monit Assess 58:317–335

    CAS  Google Scholar 

  • Rodrigues S, Henriques B, Reis A, Duarte A, Pereira E, Römkens PFAM (2012) Hg transfer from contaminated soils to plants and animals. Environ Chem Lett 10:61–67

    CAS  Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248

    CAS  Google Scholar 

  • Salt DE, Smith R.D, Raskin L (1998) Phytoremediation. Ann Rev Plant Phys Plant Mol Biol. 49 (1):643–668

    Google Scholar 

  • Sheoran V, Sheoran A, Poonia P (2011) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol 41:168–214

    Google Scholar 

  • Simon L (1999) Soil pollution, soil remediation (p. 221). Budapest: Környezetgazdálkodási Intézet (Environ mental Management Institute). In Hungarian

    Google Scholar 

  • Simon L (2005) Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth. Environ. Geochem. Health 27:289–300

    CAS  Google Scholar 

  • Smith MR (1990) The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1:191–206

    CAS  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    CAS  Google Scholar 

  • Wood WB (1974) Genetic map of bacteriophage T4. In: King RC (ed) Handbook of genetics. Van Nostrand Reinhold, New York

    Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology 2011:1–20

    Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    CAS  Google Scholar 

  • Zhuang P, Yang Q, Wang H, Shu W (2007) Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Pollut 184:235–242

    CAS  Google Scholar 

  • Zhushan F, Xi S (2019) The effects of heavy metals on human metabolism. Toxicol Mech Methods. https://doi.org/10.1080/15376516.2019.1701594

  • Zornoza R, Faz A, Carmona DM, Acosta JA, Martinez-Martinez S, Vreng A (2013) Carbon mineralization, microbial activity and metal dynamics in tailing ponds amended with pig slurry and marble waste. Chemosphere 90:2606–2613. https://doi.org/10.1016/j.chemosphere.2012.10.107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Midhat, L., Mandi, L., Ouazzani, N., Tounsi, A., Zine, H., Merzouki, H. (2022). Metallic Trace Elements in Soil: Persistence, Toxicity, Bioaccumulation, and Biological Remediation. In: Chatoui, H., Merzouki, M., Moummou, H., Tilaoui, M., Saadaoui, N., Brhich, A. (eds) Nutrition and Human Health. Springer, Cham. https://doi.org/10.1007/978-3-030-93971-7_5

Download citation

Publish with us

Policies and ethics