Skip to main content

Recent Developments in Energy Recovery from Sewage Treatment Plant Sludge via Anaerobic Digestion

  • Chapter
  • First Online:
Environmental Management in India: Waste to Wealth
  • 219 Accesses

Abstract

In recent years, there has been a paradigm shift towards exploring renewable sources of energy to reduce the dependence on fast depleting fossil fuels. Anaerobic digestion (AD) is a process that has potential to manage ever-increasing municipal sewage treatment plant (STP) sludge to protect our environment and recover energy in the form of biogas. This chapter presents a comprehensive review of the basic principles, process control, reactor design, biogas purification technologies and the energy utilization systems with a special focus on recent developments in the field for improving the process performance. Among the four stages in the process, hydrolysis is recognized to limit the process rate due to the recalcitrant properties of the sludge. Various physical, chemical and biological pre-treatment technologies have recently been implemented to accelerate the digestion through enhancing the rate of hydrolysis. These process parameters and their interactions are crucial to AD because they play a vital role in biogas production and regulate the metabolic conditions for growth of microorganisms. The centre of interest in the reactor design is the optimal utilization of sludge by enhancing its attachment to biomass. Besides, various biogas refinement techniques and systems for their utilization have been discussed. In a nutshell, this chapter reveals the current research and development trends of technological advancement in the energy recovery from STP sludge via its AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Merlin Christy, P., Gopinath, L. R., & Divya, D. (2014). A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renewable and Sustainable Energy Reviews, 34, 167–173.

    Article  CAS  Google Scholar 

  2. Central Statistics Office. (2016). Energy statistics 2016. Ministry of Statistics and Programme Implementation Government of India.

    Google Scholar 

  3. Dai, X., Duan, N., Dong, B., & Dai, L. (2013). High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: Stability and performance. Waste Management, 33(2), 308–316.

    Article  CAS  Google Scholar 

  4. Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34(6), 755–781.

    Article  CAS  Google Scholar 

  5. Li, X., Peng, Y., He, Y., Wang, S., Guo, S., & Li, L. (2017). Anaerobic stabilization of waste activated sludge at different temperatures and solid retention times: Evaluation by sludge reduction, soluble chemical oxygen demand release and dehydration capability. Bioresource Technology, 227, 398–403.

    Article  CAS  Google Scholar 

  6. Gurjar, B. R., & Tyagi, V. K. (2017). Sludge management. CRC Press.

    Google Scholar 

  7. Jolis, D. (2008). High-solids anaerobic digestion of municipal sludge pretreated by thermal hydrolysis. Water Environment Research, 80, 654–662.

    Article  CAS  Google Scholar 

  8. Liao, X., Li, H., Zhang, Y., Liu, C., & Chen, Q. (2016). Accelerated high-solids anaerobic digestion of sewage sludge using low-temperature thermal pretreatment. International Biodeterioration and Biodegradation, 106, 141–149.

    Article  CAS  Google Scholar 

  9. Guendouz, J., Buffiere, P., Cacho, J., Carrere, M., & Delgenes, J. P. (2008). High-solids anaerobic digestion: Comparison of three pilot scales. Water Science and Technology, 58(9), 1757–1763.

    Article  CAS  Google Scholar 

  10. Li, H., Zhang, Y., Liu, C., Chen, Q., & Si, D. (2016). Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge. Bioresource Technology, 216, 87–94.

    Article  Google Scholar 

  11. Song, G. J., & Feng, X. Y. (2011). Review of enzymatic sludge hydrolysis. Journal of Bioremediation and Biodegradation, 2(5), 130.

    Google Scholar 

  12. Paul, E., & Liu, Y. (2012). Biological sludge minimization and biomaterials/bioenergy. Wiley.

    Google Scholar 

  13. Yuan, H., & Zhu, N. (2016). Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion. Renewable and Sustainable Energy Reviews, 58, 429–438.

    Article  CAS  Google Scholar 

  14. Cano, R., Pérez-Elvira, S. I., & Fdz-Polanco, F. (2015). Energy feasibility study of sludge pretreatments: A review. Applied Energy, 149, 176–185.

    Article  CAS  Google Scholar 

  15. Zhong, W., Zhang, Z., Luo, Y., Sun, S., Qiao, W., & Xiao, M. (2011). Effect of biological pretreatments in enhancing corn straw biogas production”. Bioresource Technology, 102(24), 11177–11182.

    Article  CAS  Google Scholar 

  16. Luo, K., Yang, Q., Li, X. M., Yang, G. J., Liu, Y., Wang, D. B., Zheng, W., & Zeng, G. M. (2012). Hydrolysis kinetics in anaerobic digestion of waste activated sludge enhanced by α-amylase. Biochemical Engineering Journal, 62, 17–21.

    Google Scholar 

  17. Barber, W. P. F. (2016). Thermal hydrolysis for sewage treatment: A critical review. Water Research, 104, 53–71.

    Article  CAS  Google Scholar 

  18. Carrère, H., Dumas, C., Battimelli, A., Batstone, D. J., Delgenès, J. P., Steyer, J. P., & Ferrer, I. (2010). Pretreatment methods to improve sludge anaerobic degradability: A review. Journal of Hazardous Materials, 183(1–3), 1–15.

    Article  Google Scholar 

  19. Zhen, G., Lu, X., Kato, H., Zhao, Y., & Li, Y. Y. (2017). Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renewable and Sustainable Energy Reviews, 69, 559–577.

    Article  CAS  Google Scholar 

  20. Adekunle, K. F., & Okolie, J. A. (2015). A review of biochemical process of anaerobic digestion. Advances in Bioscience and Biotechnology, 6(3), 205–212.

    Article  Google Scholar 

  21. Nzila, A. (2017). Mini review: Update on bioaugmentation in anaerobic processes for biogas production. Anaerobe, 46, 3–12.

    Article  CAS  Google Scholar 

  22. Demirel, B., & Yenigün, O. (2002). Two-phase anaerobic digestion processes: A review. Journal of Chemical Technology and Biotechnology, 77(7), 743–755.

    Article  CAS  Google Scholar 

  23. Xing, J., Criddle, C., & Hickey, R. (1997). Effects of a long-term periodic substrate perturbation on an anaerobic community. Water Research, 31(9), 2195–2204.

    Article  CAS  Google Scholar 

  24. McCarty, P. L., & Smith, D. P. (1986). Anaerobic wastewater treatment. Environmental Science and Technology, 20(12), 1200–1206.

    Article  CAS  Google Scholar 

  25. Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540–555.

    Article  CAS  Google Scholar 

  26. Tchobanoglous, G., Burtan, F. L., & Stensel, H. D. (2003). Wastewater engineering: Treatment and reuse. Tata McGraw-Hill.

    Google Scholar 

  27. Qiang, H., Niu, Q., Chi, Y., & Li, Y. (2013). Trace metals requirements for continuous thermophilic methane fermentation of high-solid food waste. Chemical Engineering Journal, 222, 330–336.

    Article  CAS  Google Scholar 

  28. Schattauer, A., Abdoun, E., Weiland, P., Plöchl, M., & Heiermann, M. (2011). Abundance of trace elements in demonstration biogas plants. Biosystems Engineering, 108(1), 57–65.

    Article  Google Scholar 

  29. Choong, Y. Y., Norli, I., Abdullah, A. Z., & Yhaya, M. F. (2016). Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. Bioresource Technology, 209, 369–379.

    Article  CAS  Google Scholar 

  30. Feng, Y., Zhang, Y., Quan, X., & Chen, S. (2014). Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron. Water Research, 52, 242–250.

    Article  CAS  Google Scholar 

  31. Linville, J. L., Shen, Y., Schoene, R. P., Nguyen, M., Urgun-Demirtas, M., & Snyder, S. W. (2016). Impact of trace element additives on anaerobic digestion of sewage sludge with in-situ carbon dioxide sequestration. Process Biochemistry, 51(9), 1283–1289.

    Article  CAS  Google Scholar 

  32. Amir, S., Hafidi, M., Merlina, G., & Revel, J. C. (2005). Sequential extraction of heavy metals during composting of sewage sludge. Chemosphere, 59(6), 801–810.

    Article  CAS  Google Scholar 

  33. Hsu, J. H., & Lo, S. L. (2001). Effect of composting on characterization and leaching of copper, manganese, and zinc from swine manure. Environmental Pollution, 114(1), 119–127.

    Article  CAS  Google Scholar 

  34. Huiliñir, C., Pinto-Villegas, P., Castillo, A., Montalvo, S., & Guerrero, L. (2017). Biochemical methane potential from sewage sludge: Effect of an aerobic pretreatment and fly ash addition as source of trace elements. Waste Management, 64, 140–148.

    Article  Google Scholar 

  35. Rincón, B., Borja, R., González, J. M., Portillo, M. C., & Sáiz-Jiménez, C. (2008). Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue. Biochemical Engineering Journal, 40(2), 253–261.

    Article  Google Scholar 

  36. Lindmark, J., Thorin, E., Bel Fdhila, R., & Dahlquist, E. (2014). Effects of mixing on the result of anaerobic digestion: Review. Renewable and Sustainable Energy Reviews, 40, 1030–1047.

    Article  CAS  Google Scholar 

  37. Procházka, J., Dolejš, P., MácA, J., & Dohányos, M. (2012). Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Applied Microbiology and Biotechnology, 93(1), 439–447.

    Article  Google Scholar 

  38. Lay, J., Li, Y., & Noike, T. (1998). The influence of pH and ammonia concentration on the methane production in high-solids digestion processes. Water Environment Research, 70(5), 1075–1082.

    Article  CAS  Google Scholar 

  39. Garcia, M. L., & Angenent, L. T. (2009). Interaction between temperature and ammonia in mesophilic digesters for animal waste treatment. Water Research, 43(9), 2373–2382.

    Article  CAS  Google Scholar 

  40. Hansen, K. H., Angelidaki, I., & Ahring, B. K. (1998). Anaerobic digestion of swine manure: Inhibition by ammonia. Water Research, 32(1), 5–12.

    Article  CAS  Google Scholar 

  41. Fricke, K., Santen, H., Wallmann, R., Hüttner, A., & Dichtl, N. (2007). Operating problems in anaerobic digestion plants resulting from nitrogen in MSW. Waste Management, 27(1), 30–43.

    Article  CAS  Google Scholar 

  42. Kovács, E., Wirth, R., Maróti, G., Bagi, Z., Nagy, K., Minárovits, J., Rákhely, G., & Kovács, K. L. (2015). Augmented biogas production from protein-rich substrates and associated metagenomic changes. Bioresource Technology, 178, 254–261.

    Article  Google Scholar 

  43. De Vrieze, J., Hennebel, T., Boon, N., & Verstraete, W. (2012). Methanosarcina: The rediscovered methanogen for heavy duty biomethanation. Bioresource Technology, 112, 1–9.

    Article  Google Scholar 

  44. Harrison, S. T. L. (1991). Bacterial cell disruption: A key unit operation in the recovery of intracellular products. Biotechnology Advances, 9(2), 217–240.

    Article  CAS  Google Scholar 

  45. Mudhoo, A. (2012). Biogas production: pretreatment methods in anaerobic digestion. In A. Mudhoo (Ed.), Scrivener Publishing.

    Google Scholar 

  46. Geng, Y., Zhang, B., Du, L., Tang, Z., Li, Q., Zhou, Z., & Yin, X. (2016). Improving methane production during the anaerobic digestion of waste activated sludge: Cao-ultrasonic pretreatment and using different seed sludges. Procedia Environmental Sciences, 31, 743–752.

    Article  Google Scholar 

  47. Seng, B., Khanal, S. K., & Visvanathan, C. (2010). Anaerobic digestion of waste activated sludge pretreated by a combined ultrasound and chemical process. Environmental Technology, 31(3), 257–265.

    Article  CAS  Google Scholar 

  48. Rittmann, B. E., Lee, H., Zhang, H., Alder, J., Banaszak, J. E., & Lopez, R. (2018). Full-scale application of focused-pulsed pre-treatment for improving biosolids digestion and conversion to methane. 1895–1901.

    Google Scholar 

  49. Elliott, A., & Mahmood, T. (2012). Comparison of mechanical pretreatment methods for the enhancement of anaerobic digestion of pulp and paper waste activated sludge. Water Environment Research, 84(6), 497–505.

    Article  CAS  Google Scholar 

  50. Ariunbaatar, J., Panico, A., Esposito, G., Pirozzi, F., & Lens, P. N. L. (2014). Pretreatment methods to enhance anaerobic digestion of organic solid waste. Applied Energy, 123, 143–156.

    Article  CAS  Google Scholar 

  51. Atelge, M. R., Atabani, A. E., Banu, J. R., Krisa, D., Kaya, M., Eskicioglu, C., Kumar, G., Lee, C., Yildiz, Y. Ş, Unalan, S., & Mohanasundaram, R. (2020). A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery. Fuel, 270, 1–31.

    Article  Google Scholar 

  52. Pilli, S., Pandey, A. K., Katiyar, A., Pandey, K., & Tyagi, R. D. (2020). Pre-treatment technologies to enhance anaerobic digestion. In sustainable sewage sludge management and resource efficiency. IntechOpen.

    Google Scholar 

  53. Wang, T., Xu, B., Zhang, X., Yang, Q., Xu, B., & Yang, P. (2018). Enhanced biogas production and dewaterability from sewage sludge with alkaline pretreatment at mesophilic and thermophilic temperatures. Water, Air, and Soil pollution, 229(57), 1–10.

    Google Scholar 

  54. Yu, S., Zhang, G., Li, J., Zhao, Z., & Kang, X. (2013). Effect of endogenous hydrolytic enzymes pretreatment on the anaerobic digestion of sludge. Bioresource Technology, 146, 758–761.

    Article  CAS  Google Scholar 

  55. Yang, Q., Luo, K., Li, X. M., Wang, D. B., Zheng, W., Zeng, G. M., & Liu, J. J. (2010). Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes. Bioresource Technology, 101(9), 2924–2930.

    Google Scholar 

  56. Weiß, S., Tauber, M., Somitsch, W., Meincke, R., Müller, H., Berg, G., & Guebitz, G. M. (2010). Enhancement of biogas production by addition of hemicellulolytic bacteria immobilised on activated zeolite. Water Research, 44(6), 1970–1980.

    Article  Google Scholar 

  57. Kadier, A., Simayi, Y., Abdeshahian, P., Azman, N. F., Chandrasekhar, K., & Kalil, M. S. (2016). A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alexandria Engineering Journal, 55, 427–443.

    Article  Google Scholar 

  58. Sasaki, D., Sasaki, K., Watanabe, A., Morita, M., Matsumoto, N., Igarashi, Y., & Ohmura, N. (2013). Operation of a cylindrical bioelectrochemical reactor containing carbon fiber fabric for efficient methane fermentation from thickened sewage sludge. Bioresource Technology, 129, 366–373.

    Article  CAS  Google Scholar 

  59. Ullah Khan, I., Hafiz Dzarfan Othman, M., Hashim, H., Matsuura, T., Ismail, A. F., Rezaei-DashtArzhandi, M., & Wan Azelee, I. (2017). Biogas as a renewable energy fuel – A review of biogas upgrading, utilisation and storage. Energy Conversion and Management, 150, 277–294.

    Google Scholar 

  60. Kapoor, R., Ghosh, P., Kumar, M., & Vijay, V. K. (2019). Evaluation of biogas upgrading technologies and future perspectives : A review. Environmental Science and Pollution Research, 26, 11631–11661.

    Article  CAS  Google Scholar 

  61. Sahota, S., Shah, G., Ghosh, P., Kapoor, R., Sengupta, S., Singh, P., Vijay, V., Vijay, V. K., & Thakur, I. S. (2018). Review of trends in biogas upgradation technologies and future perspectives. Bioresource Technology Reports, 1, 79–88.

    Article  Google Scholar 

  62. Adnan, A. I., Ong, M. Y., Nomanbhay, S., Chew, K. W., & Show, P. L. (2019). Technologies for biogas upgrading to biomethane : A review. Bioengineering, 6(4), 1–23.

    Article  Google Scholar 

  63. Angelidaki, I., Xie, L., Luo, G., Zhang, Y., Oechsner, H., Lemmer, A., Munoz, R., & Kougias, P. G. (2019). Biogas upgrading: Current and emerging technologies. biofuels: Alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels. Elsevier Inc.

    Google Scholar 

  64. Singhal, S., Agarwal, S., Arora, S., Sharma, P., & Singhal, N. (2017). Upgrading techniques for transformation of biogas to bio-CNG: A review. International Journal of Energy Research.

    Google Scholar 

  65. Miltner, M., Makaruk, A., & Harasek, M. (2017). Review on available biogas upgrading technologies and innovations towards advanced solutions. Journal of Cleaner Production, 161, 1329–1337.

    Article  CAS  Google Scholar 

  66. Ravindra, P. (2015). Advances in bioprocess technology. Springer.

    Book  Google Scholar 

  67. Hakawati, R., Smyth, B. M., McCullough, G., De Rosa, F., & Rooney, D. (2017). What is the most energy efficient route for biogas utilization: Heat, electricity or transport? Applied Energy, 206, 1076–1087.

    Article  Google Scholar 

  68. Yousuf, A., Khan, M. R., Pirozzi, D., & Ab Wahid, Z. (2016). Financial sustainability of biogas technology: Barriers, opportunities, and solutions. Energy Sources, Part B: Economics, Planning and Policy, 11(9), 841–848.

    Article  Google Scholar 

  69. Mittal, S., Ahlgren, E. O., & Shukla, P. R. (2018). Barriers to biogas dissemination in India: A review. Energy Policy, 112, 361–370.

    Article  CAS  Google Scholar 

  70. Fagbohungbe, M. O., Herbert, B. M. J., Hurst, L., Li, H., Usmani, S. Q., & Semple, K. T. (2016). Impact of biochar on the anaerobic digestion of citrus peel waste. Bioresource Technology, 216, 142–149.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Government of India, Ministry of Human Resource Development (MHRD) for providing the financial assistantship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja Sonal Anand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anand, R.S., Kumar, P. (2022). Recent Developments in Energy Recovery from Sewage Treatment Plant Sludge via Anaerobic Digestion. In: Yadav, S., Negm, A.M., Yadava, R.N. (eds) Environmental Management in India: Waste to Wealth. Springer, Cham. https://doi.org/10.1007/978-3-030-93897-0_10

Download citation

Publish with us

Policies and ethics