Skip to main content

Advanced Adsorbents for Ecological Applications: Water Harvesting from the Atmosphere and Recuperation of Heat and Moisture in Ventilation Systems

  • Chapter
  • First Online:
Rapid Refrigeration and Water Protection

Part of the book series: Springer Water ((SPWA))

  • 224 Accesses

Abstract

The Chapter addresses two emerging adsorption processes aimed at improving the Earth's ecology, namely, water harvesting from the atmosphere and recuperation of heat and moisture in ventilation systems. Both systems are open and can be examined in a unified way by analyzing a thermodynamic cycle of the process to account for various climatic conditions. Since these conditions can significantly vary for seasons and geographic locations, they have to be correctly taken into account to formulate thermodynamic requirements to an optimal adsorbent. Special attention is paid to a) harmonization of the adsorbent and the cycle, and b) the preparation of the optimal adsorbent and its testing. Advanced adsorbents selected/developed/tested for both applications are considered

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joachim H (1890) Papyrus Ebers, Berlin

    Google Scholar 

  2. Schueth F, Sing KSW, Weitkamp J (2002) Handbook of porous solids eds.Willey-VCH, Weinheim, Germany, 1:12

    Google Scholar 

  3. Scheele CW (1894) Chemische Abhandlung von der Luft und dem Feuer (1773), see: Ostwald's Klassiker der exakten Wiss. 58

    Google Scholar 

  4. Fontana F (1777) Mem Mat Fis Soc Ital, 1: 679

    Google Scholar 

  5. Kehi DM (1793) Observations et Journal sur la Physique, de Chemie et d’Histoire Naturelle et des Arts, Paris: XLII, 250

    Google Scholar 

  6. Lowitz T (1786) Crell's Chem. Ann 1:211

    Google Scholar 

  7. Dabrovski A (2001) Adsorption — from theory to practice. Adv Coll Interface Sci 93:135–224

    Article  Google Scholar 

  8. Yang RT (1997) Gas separation by adsorption processes. Handb Porous Solids Eds, London

    Book  Google Scholar 

  9. Tomphson G (1986) The Museum Environment. London-Boston

    Google Scholar 

  10. Roes AWM, Swaaij WPM (1979) Hydrodynamic behaviour of a gas-solid counter-current packed column at trickle flow. Chem Engng J 17:81

    Article  CAS  Google Scholar 

  11. Kaviany M (1995) Principles of heat transfer in porous media, 2nd edn. Springer, New York

    Book  Google Scholar 

  12. ASHRAE, Handbook-Fundamentals American Society of Heating, Refrigeration and Air-conditioning Engineers. Atlanta, GA, USA (1997)

    Google Scholar 

  13. DallBauman LA, Finn JE. Dabrowski A (ed.) (1999) Adsorption and its applications in industry and environmental protection. 120B Elsevier, Amsterdam, 455.

    Google Scholar 

  14. Wang R, Wang L, Wu J (2014) Adsorption refrigeration technology: theory and application. John Wiley & Sons, Singapore Pte. Ltd

    Google Scholar 

  15. Tu YD, Wang RZ, Zhang YN, Wang JY (2018) Progress and expectation of atmospheric water harvesting. Joule 2:1452–1475

    Article  CAS  Google Scholar 

  16. Alonso MJ, Liu P, Mathisen HM, Ge G, Simonson C (2015) Review of heat/energy recovery exchangers for use in ZEBs in cold climate countries. Build Environ 84:228–237

    Article  Google Scholar 

  17. Food and Agriculture organization of the United Nations. Water. http://www.fao.org/land-water/water/water-scarcity/en/, 2012 (last access on May 4, 2020)

  18. Fathieh F, Kalmutzki MJ, Kapustin EA, Waller PJ, Yang J, Yaghi OM (2018) Practical water production from desert air. Sci Adv 4, eaat3198.

    Google Scholar 

  19. Gleick PH (1993) Water in Crisis: A Guide to the World’s Fresh Water Resources. Oxford Univ. Press, Oxford

    Google Scholar 

  20. Shiklomanov I (1993) World fresh water resources. Water in Crisis: A Guide to the World's Fresh Water Resources (Ed. P. H. Gleick), Oxford University Press, New York

    Google Scholar 

  21. Beysens D, Milimouk I (2000) Pour les ressources alternatives en eau (The case for alternative fresh water sources). Sécheresse 11:281–288

    Google Scholar 

  22. Wada Y, de Graaf IEM, van Beek LPH (2016) High-resolution modeling of human and climate impacts on global water resources. J Adv Model Earth Syst 8:735–763

    Article  Google Scholar 

  23. Kogan B, Trahtman A (2003) The moisture from the air as water resource in arid region: hopes, doubts and facts. J Arid Environ 53:231–240

    Article  Google Scholar 

  24. United Nations Population. Fund State of the World population 2011. (2012).

    Google Scholar 

  25. Eurostat Energy Yearly Statiscits 2008, Publication Office of the European Union (2010).

    Google Scholar 

  26. Report «On enhancement of energy efficiency of the Russian economy». Arkhangelsk, April 2009; http://www.cenef.ru/file/Report%2025.05.09.pdf (last access on November 2, 2021).

  27. Filippov SP, Dil’man MD, Ionov MS. (2013) The optimum levels of the thermal protection of residential buildings under climatic conditions of Russia. Therm Engn 60: 841–851

    Google Scholar 

  28. Riffat SB, Zhao X, Doherty PS (2006) Application of sorption heat recovery systems in heating appliances—Feasibility study. Appl Therm Engn 26:46–55

    Article  CAS  Google Scholar 

  29. Aristov Yu.I, Mezentsev IS, Mukhin VA (2006) New approach to regenerating heat and moisture in ventilation systems. 1. Laboratory prototype. J. Engineering and Thermophysics 79:(3) 143–150

    Google Scholar 

  30. Aristov YuI, Mezentsev IS, Mukhin VA (2008) A new approach to regenerating heat and moisture in ventilation systems. Ener Build 40:204–208

    Article  Google Scholar 

  31. Shkatulov A, Gordeeva LG, Girnik IS, Huinink H, Aristov Yu.I (2020) Novel adsorption method for moisture and heat recuperation in ventilation. Composites “LiCl/matrix” tailored for cold climate. Energy 201:117595

    Google Scholar 

  32. Aristov YuI (2020) Nanocomposite Sorbents for Multiple Applications. Jenny Stanford Publishing Pte. Ltd., New York

    Book  Google Scholar 

  33. Gordeeva LG, Solovyeva MV, Sapienza A, Aristov YuI (2020) Potable water extraction from the atmosphere: Potential of MOFs. Renewable Energy 148:72–80

    Article  CAS  Google Scholar 

  34. World Survey of climatology. Vol 10. Climates of Africa (Ed. J.F. Griffiths). Elseveir, Amsterdam, London, New York (1972).

    Google Scholar 

  35. Alayli Y, Hadji NE, Leblond J (1987) A new process for extraction of water from air. Desalination 67:227–229

    Article  CAS  Google Scholar 

  36. Gordeeva LG, Tokarev MM, Parmon VN, Aristov Yu.I (1998) Selective water sorbents for multiple applications: 6. Fresh water production from the atmosphere. React Kinet Catal Lett, 65: 153–160

    Google Scholar 

  37. Aristov YuI, Tokarev MM, Gordeeva LG, Snytnikov VN, Parmon VN (1999) New composite sorbents for solar-driven technology of fresh water production from the atmosphere. Sol Energy 66:165–168

    Article  CAS  Google Scholar 

  38. Wang JY, Wang RZ, Wang LW, Liu JY (2017) A high efficient semi-open system for fresh water production from atmosphere. Energy 138:542–551

    Article  Google Scholar 

  39. Polanyi M (1932) Section III. Theories of the adsorption of gases. A general survey and some additional remarks. Trans Faraday Soc 28: 316–333

    Google Scholar 

  40. Meteonorm n.d. https://meteonorm.com/en/ (last access on May 5, 2020)

  41. Wolkoff P, Kjærgaard SK (2007) The dichotomy of relative humidity on indoor air quality. Environ Int 33:850–857

    Article  CAS  Google Scholar 

  42. Gordeeva LG, Aristov YI (2012) Composites “salt inside porous matrix” for adsorption heat transformation: A current state-of-the-art and new trends. Int J Low-Carbon Technol 7:288–302

    Article  CAS  Google Scholar 

  43. Ferey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214

    Article  CAS  Google Scholar 

  44. Kitagawa S, Kitaura R, Noro S (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375

    Article  CAS  Google Scholar 

  45. Grekova AD, Gordeeva LG, Aristov YI (2017) Composite “LiCl/vermiculite” as advanced water sorbent for thermal energy storage. Appl Therm Eng 124:1401–1408

    Article  CAS  Google Scholar 

  46. Shkatulov AI, Houben J, Fischer H, Huinink HP (2019) Stabilization of K2CO3 in vermiculite for thermochemical energy storage. Renew Energy 150:990–1000

    Article  CAS  Google Scholar 

  47. Calabrese L, Brancato V, Palomba V, Frazzica A, Cabeza LF (2018) Assessment of the hydration/dehydration behaviour of MgSO4 · 7H2O filled cellular foams for sorption storage applications through morphological and thermo-gravimetric analyses. Sustain Mater Technol 17: e00073

    Google Scholar 

  48. Glaznev IS, Ponomarenko IV, Kirik SD, Aristov YuI (2011) Composites CaCl2/SBA-15 for adsorptive transformation of low temperature heat: pore size effect. Int J Refrig 34:1244–1250

    Article  CAS  Google Scholar 

  49. Simonova IA, Aristov YI (2005) Sorption properties of calcium nitrate dispersed in silica gel: the effect of pore size. Rus J Phys Chem 79:1307–1311

    CAS  Google Scholar 

  50. Gordeeva LG, Glaznev IS, Savchenko EV et al (2006) Impact of phase composition on water adsorption on inorganic hybrids “salt/silica.” J Colloid Interface Sci 301:685–691

    Article  CAS  Google Scholar 

  51. Gordeeva LG, Grekova AD, Krieger TA, Aristov YuI (2009) Adsorption properties of composite materials (LiCl + LiBr)/silica. Micropor Mesopor Mater 126:262–267

    Article  CAS  Google Scholar 

  52. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423:705–714

    Article  CAS  Google Scholar 

  53. Kuesgens P, Rose M, Senkovska I, Froede H, Henschel A, Siegle S, Kaskel S (2009) Characterization of metal-organic frameworks by water adsorption. Micropor Mesopor Mater 120:325–330

    Article  CAS  Google Scholar 

  54. Akiyama G, Matsuda R, Sato H, Hori A, Takata M, Kitagawa S (2012) Effect of functional groups in MIL-101 on water sorption behavior. Micropor Mesopor Mater 157:89–93

    Article  CAS  Google Scholar 

  55. Towsif Abtab SM, Alezi D, Bhatt PM, Shkurenko A, Belmabkhout Y, Aggarwal H, Weseliński ŁJ, Alsadun N, Samin U, Hedhili MN, Eddaoudi M (2018) Reticular chemistry in action: a hydrolytically stable MOF capturing twice its weight in adsorbed water. Chem 4:94–105

    Article  CAS  Google Scholar 

  56. Canivet J, Fateeva A, Guo Y, Coasne B, Farrusseng D (2012) Water adsorption in MOFs: fundamentals and applications. Chem Soc Rev 43:5594–5617

    Article  Google Scholar 

  57. Burtch NC, Jasuja H, Walton KS (2014) water stability and adsorption in metal−organic frameworks Chem. Rev 114:10575–10612

    CAS  Google Scholar 

  58. Akiyama G, Matsuda R, Kitagawa S (2010) Highly Porous and Stable Coordination Polymers as Water Sorption Materials. Chem Lett 39:360–361

    Article  CAS  Google Scholar 

  59. Schlichte K, Kratzke T, Kaskel S (2004) Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Micropor Mesopor Mater 73:81–88

    Article  CAS  Google Scholar 

  60. Schoenecker PM, Carson CG, Jasuja H, Flemming CJJ, Walton KS (2012) Effect of water adsorption on retention of structure and surface area of metal−organic frameworks. Ind Eng Chem Res 51:6513–6519

    Article  CAS  Google Scholar 

  61. Bourrelly S, Moulin B, Rivera A, Maurin G, Devautour-Vinot S, Serre C, Devic T, Horcajada P, Vimont A, Clet G, Daturi M, Lavalley GC, Loera-Serna S, Denoyel R, Llewellyn PL, Ferey G (2010) explanation of the adsorption of polar vapors in the highly flexible metal organic framework MIL-53(Cr). J Am Chem Soc 132:9488–9498

    Article  CAS  Google Scholar 

  62. Frohlich D, Pantatosaki E, Kolokathis PD, Markey K, Reinsch H, Baumgartner M, van der Veen MA, De Vos DE, Stock N, Papadopoulos GK, Henninger SK, Janiak C (2016) Water adsorption behaviour of CAU-10-H: a thorough investigation of its structure–property relationships. J Mater Chem A 4:11859–11869

    Article  CAS  Google Scholar 

  63. Rieth AJ, Yang S, Wang EN, Dinca M (2017) Record atmospheric fresh water capture and heat transfer with a material operating at the water uptake reversibility Limit. ACS Cent Sci 3:668–672

    Article  CAS  Google Scholar 

  64. Cadiau A, Lee JS, Borges DD, Fabry P, Devic T, Wharmby MT, Martineau C, Foucher D, Taulelle F, Jun C-H, Hwang YK, Stock N, de Lange MF, Kapteijn F, Gascon J, Maurin G, Chang J-S, Serre C (2015) Design of hydrophilic metal organic framework water adsorbents for heat reallocation. Adv Mater 27:4775–4780

    Article  CAS  Google Scholar 

  65. Wang S, Lee JS, Wahiduzzaman M, Park J, Muschi M, Martineau-Corcos C, Tissot A, Cho KH, Marrot J, Shepard W, Maurin G, Chang J-S, Serre C (2018) A robust large-pore zirconium carboxylate metal–organic framework for energy-efficient water-sorption-driven refrigeration. Nat Energy 3:985–993

    Article  CAS  Google Scholar 

  66. Aristov Yu I, Gordeeva LG (2022) Combining the psychrometric chart of humid air with water adsorption isosters: Analysis of the Ventireg process. Energy 239, part C, 122278

    Google Scholar 

  67. Girnik I, Yang T, Gordeeva L, Wang W, Ge T, Aristov, Yu (2020) New adsorption method for moisture and heat exchange in ventilation systems in cold countries: Concept and Mathematical Simulation, Energies, 13: 1386

    Google Scholar 

  68. Gordeeva LG, Restuccia G, Cacciola G, Aristov YuI (1998) Properties of the system “Lithium bromide—water” confined to silica gel pores: Equilibrium “vapor—condensed state.” Rus J Phys Chem 72:1236–1240

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the governmental order for Boreskov Institute of Catalysis (project AAAA-A21-121011390006-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larisa G. Gordeeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gordeeva, L.G., Aristov, Y.I. (2022). Advanced Adsorbents for Ecological Applications: Water Harvesting from the Atmosphere and Recuperation of Heat and Moisture in Ventilation Systems. In: Das, R., Saha, B.B. (eds) Rapid Refrigeration and Water Protection. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-93845-1_6

Download citation

Publish with us

Policies and ethics