Skip to main content

Dealing with Imbalanced Data in Multi-class Network Intrusion Detection Systems Using XGBoost

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2021)

Abstract

Network intrusion detection is a crucial cyber-security problem, where machine learning is recognised as a relevant approach to detect signs of malicious activity in the network traffic. However, intrusion detection patterns learned with imbalanced network traffic data often fail in recognizing rare attacks. One way to address this issue is to use oversampling before learning, in order to adjust the ratio between the different classes and make the traffic data more balanced. This paper investigates the effect of oversampling coupled to feature selection, in order to understand how the feature relevance may change due to the creation of artificial rare samples. We perform this study using XGBoost for the network traffic classification. The experiments are performed with two benchmark multi-class network intrusion detection problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.unb.ca/cic/datasets/nsl.html.

  2. 2.

    https://github.com/ModelOriented/DALEX.

References

  1. Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J., Ahmad, F.: Network intrusion detection system: a systematic study of machine learning and deep learning approaches. Trans. Emerg. Telecommun. Technol. 32(1), e4150 (2021). https://doi.org/10.1002/ett.4150

    Article  Google Scholar 

  2. Alazzam, H., Sharieh, A., Sabri, K.E.: A feature selection algorithm for intrusion detection system based on pigeon inspired optimizer. Expert Syst. Appl. 148, 113249 (2020). https://doi.org/10.1016/j.eswa.2020.113249

    Article  Google Scholar 

  3. Alin, F., Chemchem, A., Nolot, F., Flauzac, O., Krajecki, M.: Towards a hierarchical deep learning approach for intrusion detection. In: Boumerdassi, S., Renault, É., Mühlethaler, P. (eds.) MLN 2019. LNCS, vol. 12081, pp. 15–27. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45778-5_2

    Chapter  Google Scholar 

  4. Andresini, G., Appice, A., Di Mauro, N., Loglisci, C., Malerba, D.: Exploiting the auto-encoder residual error for intrusion detection. In: 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW), pp. 281–290. IEEE (2019)

    Google Scholar 

  5. Andresini, G., Appice, A., Malerba, D.: Autoencoder-based deep metric learning for network intrusion detection. Inf. Sci. 569, 706–727 (2021). https://doi.org/10.1016/j.ins.2021.05.016

    Article  MathSciNet  Google Scholar 

  6. Andresini, G., Appice, A., Malerba, D.: Nearest cluster-based intrusion detection through convolutional neural networks. Knowl.-Based Syst. 216, 106798 (2021). https://doi.org/10.1016/j.knosys.2021.106798

    Article  Google Scholar 

  7. Andresini, G., Appice, A., Mauro, N.D., Loglisci, C., Malerba, D.: Multi-channel deep feature learning for intrusion detection. IEEE Access 8, 53346–53359 (2020)

    Article  Google Scholar 

  8. Andresini, G., Appice, A., Rose, L.D., Malerba, D.: Gan augmentation to deal with imbalance in imaging-based intrusion detection. Futur. Gener. Comput. Syst. 123, 108–127 (2021)

    Article  Google Scholar 

  9. Bagui, S., Li, K.: Resampling imbalanced data for network intrusion detection datasets. J. Big Data 8(1), 1–41 (2021). https://doi.org/10.1186/s40537-020-00390-x

    Article  Google Scholar 

  10. Baniecki, H., Kretowicz, W., Piatyszek, P., Wisniewski, J., Biecek, P.: dalex: Responsible Machine Learning with Interactive Explainability and Fairness in Python. arXiv:2012.14406 (2020). https://arxiv.org/abs/2012.14406

  11. Bansal, A., Kaur, S.: Extreme gradient boosting based tuning for classification in intrusion detection systems. In: Singh, M., Gupta, P.K., Tyagi, V., Flusser, J., Ören, T. (eds.) ICACDS 2018. CCIS, vol. 905, pp. 372–380. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-1810-8_37

    Chapter  Google Scholar 

  12. Bedi, P., Gupta, N., Jindal, V.: I-SiamIDS: an improved Siam-IDS for handling class imbalance in network-based intrusion detection systems. Appl. Intell. 51, 1133–1151 (2021)

    Article  Google Scholar 

  13. Bhati, B.S., Chugh, G., Al-Turjman, F., Bhati, N.S.: An improved ensemble based intrusion detection technique using XGBoost. Trans. Emerg. Telecommun. Technol. 1–15 (2020). https://doi.org/10.1002/ett.4076

  14. Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. (JAIR) 16, 321–357 (2002)

    Article  Google Scholar 

  15. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 785–794. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2939672.2939785

  16. da Costa, K.A., Papa, J.P., Lisboa, C.O., Munoz, R., de Albuquerque, V.H.C.: Internet of things: a survey on machine learning-based intrusion detection approaches. Comput. Netw. 151, 147–157 (2019). https://doi.org/10.1016/j.comnet.2019.01.023

    Article  Google Scholar 

  17. Devan, P., Khare, N.: An efficient XGBoost–DNN-based classification model for network intrusion detection system. Neural Comput. Appl. 32(16), 12499–12514 (2020). https://doi.org/10.1007/s00521-020-04708-x

    Article  Google Scholar 

  18. Fisher, A., Rudin, C., Dominici, F.: All models are wrong, but many are useful: learning a variable’s importance by studying an entire class of prediction models simultaneously. J. Mach. Learn. Res. 20(177), 1–81 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Gao, X., Shan, C., Hu, C., Niu, Z., Liu, Z.: An adaptive ensemble machine learning model for intrusion detection. IEEE Access 7, 82512–82521 (2019). https://doi.org/10.1109/ACCESS.2019.2923640

    Article  Google Scholar 

  20. Inzimam, M., Yongle, C., Zhang, Z.: An efficient approach towards assessment of zero-day attacks. Int. J. Comput. Appl. 975, 8887 (2019)

    Google Scholar 

  21. Jiang, H., He, Z., Ye, G., Zhang, H.: Network intrusion detection based on PSO-Xgboost model. IEEE Access 8, 58392–58401 (2020). https://doi.org/10.1109/ACCESS.2020.2982418

    Article  Google Scholar 

  22. Lorena, A.C., de Leon Ferreira de Carvalho, A.C.P., Gama, J.: A review on the combination of binary classifiers in multiclass problems. Artif. Intell. Rev. 30(1–4), 19–37 (2008). https://doi.org/10.1007/s10462-009-9114-9

    Article  Google Scholar 

  23. Ma, X., Shi, W.: AESMOTE: adversarial reinforcement learning with SMOTE for anomaly detection. IEEE Trans. Netw. Sci. Eng. 8(2), 943–956 (2021). https://doi.org/10.1109/TNSE.2020.3004312

  24. Pan, L., Xie, X.: Network intrusion detection model based on PCA + ADASYN and XGBoost. In: 3rd International Conference on E-Business, Information Management and Computer Science, EBIMCS 2020, pp. 44–48. Association for Computing Machinery (2020)

    Google Scholar 

  25. Rajagopal, S., Kundapur, P.P., Hareesha, K.S.: Towards effective network intrusion detection: from concept to creation on azure cloud. IEEE Access 9, 19723–19742 (2021). https://doi.org/10.1109/ACCESS.2021.3054688

    Article  Google Scholar 

  26. Sapre, S., Islam, K., Ahmadi, P.: A comprehensive data sampling analysis applied to the classification of rare IoT network intrusion types. In: IEEE 18th Annual Consumer Communications Networking Conference, CCNC 2021, pp. 1–2 (2021). https://doi.org/10.1109/CCNC49032.2021.9369617

  27. Sharafaldin, I., Habibi Lashkari, A., Ghorbani, A.: Toward generating a new intrusion detection dataset and intrusion traffic characterization, pp. 108–116 (2018). https://doi.org/10.5220/0006639801080116

  28. Tan, X., et al.: Wireless sensor networks intrusion detection based on smote and the random forest algorithm. Sensors 19(1), 203 (2019). https://doi.org/10.3390/s19010203

    Article  Google Scholar 

  29. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD CUP 99 data set. In: CISDA, pp. 1–6 (2009)

    Google Scholar 

  30. Velan, P., Medková, J., Jirsík, T., Čeleda, P.: Network traffic characterisation using flow-based statistics. In: NOMS 2016–2016 IEEE/IFIP Network Operations and Management Symposium, pp. 907–912 (2016)

    Google Scholar 

  31. Vergara, J.R., Estévez, P.A.: A review of feature selection methods based on mutual information. Neural Comput. Appl. 24(1), 175–186 (2013). https://doi.org/10.1007/s00521-013-1368-0

    Article  Google Scholar 

  32. Vinayakumar, R., Alazab, M., Soman, K.P., Poornachandran, P., Al-Nemrat, A., Venkatraman, S.: Deep learning approach for intelligent intrusion detection system. IEEE Access 7, 41525–41550 (2019)

    Article  Google Scholar 

  33. Yu, L., Liu, H.: Feature selection for high-dimensional data: A fast correlation-based filter solution. In: Proceedings, Twentieth International Conference on Machine Learning, vol. 2, pp. 856–863 (2003)

    Google Scholar 

  34. Zuech, R., Khoshgoftaar, T.: A survey on feature selection for intrusion detection. In: ISSAT International Conference on Reliability and Quality in Design, pp. 150–155 (2015)

    Google Scholar 

Download references

Acknowledgments

The research of Malik AL-Essa is funded by PON RI 2014-2020 - Machine Learning per l’Investigazione di Cyber-minacce e la Cyber-difesa - CUP H98B20000970007. We acknowledge the support of the project “Modelli e tecniche di data science per la analisi di dati strutturati” funded by the University of Bari “Aldo Moro”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malik AL-Essa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

AL-Essa, M., Appice, A. (2021). Dealing with Imbalanced Data in Multi-class Network Intrusion Detection Systems Using XGBoost. In: Kamp, M., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2021. Communications in Computer and Information Science, vol 1525. Springer, Cham. https://doi.org/10.1007/978-3-030-93733-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93733-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93732-4

  • Online ISBN: 978-3-030-93733-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics