Skip to main content

Recycled Polymer for FDM 3D Printing Filament Material: Circular Economy for Sustainability of Additive Manufacturing

  • Conference paper
  • First Online:
Advances of Science and Technology (ICAST 2021)

Abstract

Plastics have become the most popular and ubiquitous material in our daily lives and global plastic production has increased significantly. A large portion of the plastic is used to produce disposable packaging items, which are discarded and accumulated as post-consumer wastes both on the land and oceans. Distributive recycling of waste plastics through additive manufacturing became the most effective solution to overcome environmental pollution and reduce the use of fossil oils and gases. With the rise of additive manufacturing, the demand for polymers has increased exponentially and many scholars are concerned about how 3D printing filaments should be reproduced from recycled plastics. This review aimed to study the potentials of using recycled plastic for 3D printing filament to minimize environmental pollution and preserve material sustainability. The study revealed promising results for the use of recycled post-consumer plastic as a more sustainable and environmentally friendly 3D printing filament material. The impact of plastic degradation on their mechanical and thermal properties due to subsequent extrusion and contamination of plastics by impurities was also studied. Besides, the additive materials used to enhance mechanical properties and increase the molecular weight of recycled material are discussed. Finally, a conclusion is drawn and future research opportunities are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, S., Liu, Z., Jiang, S., Hou, H.: Carbonization: a feasible route for reutilization of plastic wastes. Sci. Total Environ. 710, 136250 (2020). https://doi.org/10.1016/j.scitotenv.2019.136250

    Article  Google Scholar 

  2. Al-Salem, S.M., Lettieri, P., Baeyens, J.: Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag. 29(10), 2625–2643 (2009). https://doi.org/10.1016/j.wasman.2009.06.004

    Article  Google Scholar 

  3. Hahladakis, J.N., Iacovidou, E.: Closing the loop on plastic packaging materials: what is quality and how does it affect their circularity? Sci. Total Environ. 630, 1394–1400 (2018). https://doi.org/10.1016/j.scitotenv.2018.02.330

    Article  Google Scholar 

  4. Hopewell, J., Dvorak, R., Kosior, E.: Plastics recycling: challenges and opportunities. Philos. Trans. R. Soc. B Biol. Sci. 364(1526), 2115–2126 (2009). https://doi.org/10.1098/rstb.2008.0311

    Article  Google Scholar 

  5. Atsani, S.I., Mastrisiswadi, H.: Recycled polypropylene filament for 3D printer: extrusion process parameter optimization. In: IOP Conference Series: Materials Science and Engineering, vol. 722, no. 1 (2020). https://doi.org/10.1088/1757-899X/722/1/012022

  6. Mohammed, M.I., Wilson, D., Gomez-Kervin, E., Tang, B., Wang, J.: Investigation of closed-loop manufacturing with acrylonitrile butadiene styrene over multiple generations using additive manufacturing. ACS Sustain. Chem. Eng. 7(16), 13955–13969 (2019). https://doi.org/10.1021/acssuschemeng.9b02368

    Article  Google Scholar 

  7. Arena, U., Mastellone, M.L., Perugini, F.: Life cycle assessment of a plastic packaging recycling system. Int. J. Life Cycle Assess. 8(2), 92–98 (2003). https://doi.org/10.1007/BF02978432

    Article  Google Scholar 

  8. Hamod, H.: Suitability of recycled HDPE for 3D printing filament: plastics technology (December 2014)

    Google Scholar 

  9. Choudhary, K., Sangwan, K.S., Goyal, D.: Environment and economic impacts assessment of PET waste recycling with conventional and renewable sources of energy. Procedia CIRP 80, 422–427 (2019). https://doi.org/10.1016/j.procir.2019.01.096

    Article  Google Scholar 

  10. Kreiger, M.A., Mulder, M.L., Glover, A.G., Pearce, J.M.: Life cycle analysis of distributed recycling of post-consumer high density polyethylene for 3-D printing filament. J. Clean. Prod. 70, 90–96 (2014). https://doi.org/10.1016/j.jclepro.2014.02.009

    Article  Google Scholar 

  11. Lebreton, L.C., Greer, S.D., Borrero, J.C.: Numerical modelling of floating debris in the world’s oceans. Mar. Pollut. Bull. 64(3), 653–661 (2012). https://doi.org/10.1016/j.marpolbul.2011.10.027

    Article  Google Scholar 

  12. Zhong, S., Pearce, J.M.: Tightening the loop on the circular economy: coupled distributed recycling and manufacturing with recyclebot and RepRap 3-D printing. Resour. Conserv. Recycl. 128, 48–58 (2018). https://doi.org/10.1016/j.resconrec.2017.09.023

    Article  Google Scholar 

  13. Thompson, R.C., Moore, C.J., Saal, F.S.V., Swan, S.H.: Plastics, the environment and human health: current consensus and future trends. Philos. Trans. R. Soc. B Biol. Sci. 364(1526), 2153–2166 (2009). https://doi.org/10.1098/rstb.2009.0053

    Article  Google Scholar 

  14. Ferrari, F., Corcione, C.E., Montagna, F., Maffezzoli, A.: 3D printing of polymer waste for improving people’s awareness about marine litter. Polymers (Basel) 12(8), 1738 (2020). https://doi.org/10.3390/POLYM12081738

    Article  Google Scholar 

  15. World Plastics Production 1950–2015. https://committee.iso.org/files/live/sites/tc61/files/ThePlasticIndustryBerlinAug2016-Copy.pdf. Accessed 23 Dec 2020

  16. Pakkanen, J., Manfredi, D., Minetola, P., Iuliano, L.: About the use of recycled or biodegradable filaments for sustainability of 3D printing: state of the art and research opportunities. Smart Innov. Syst. Technol. 68, 776–785 (2017). https://doi.org/10.1007/978-3-319-57078-5_73

    Article  Google Scholar 

  17. Cruz, F., Lanza, S., Boudaoud, H., Hoppe, S., Camargo, M.: Polymer recycling and additive manufacturing in an open source context: optimization of processes and methods. In: Proceedings - 26th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2015, pp. 1591–1600 (2020)

    Google Scholar 

  18. Pinho, A.C., Amaro, A.M., Piedade, A.P.: 3D printing goes greener: study of the properties of post-consumer recycled polymers for the manufacturing of engineering components. Waste Manag. 118, 426–434 (2020). https://doi.org/10.1016/j.wasman.2020.09.003

    Article  Google Scholar 

  19. Snowdon, M.R., Abdelwahab, M., Mohanty, A.K., Misra, M.: Mechanical optimization of virgin and recycled poly (ethylene terephthalate) biocomposites with sustainable biocarbon through a factorial design. Results Mater. 5, 100060 (2020). https://doi.org/10.1016/j.rinma.2020.100060

    Article  Google Scholar 

  20. Zhao, P., Rao, C., Gu, F., Sharmin, N., Fu, J.: Close-looped recycling of polylactic acid used in 3D printing: an experimental investigation and life cycle assessment. J. Clean. Prod. 197, 1046–1055 (2018). https://doi.org/10.1016/j.jclepro.2018.06.275

    Article  Google Scholar 

  21. Mohammed, M.I., Mohan, M., Das, A., Gibson, I.: A low carbon footprint approach to the reconstitution of plastics into 3D-printer filament for enhanced waste reduction, pp. 234–241 (2017). https://doi.org/10.18502/keg.v2i2.621

  22. Dontsov, Y.V., Panin, S.V., Buslovich, D.G., Berto, F.: Taguchi optimization of parameters for feedstock fabrication and FDM manufacturing of wear-resistant UHMWPE-based composites. Materials (Basel) 13(12), 1–26 (2020). https://doi.org/10.3390/ma13122718

    Article  Google Scholar 

  23. Lanzotti, A., Martorelli, M., Maietta, S., Gerbino, S., Penta, F., Gloria, A.: A comparison between mechanical properties of specimens 3D printed with virgin and recycled PLA. Procedia CIRP 79, 143–146 (2019). https://doi.org/10.1016/j.procir.2019.02.030

    Article  Google Scholar 

  24. Mikula, K., et al.: 3D printing filament as a second life of waste plastics—a review. Environ. Sci. Pollut. Res. 28(10), 12321–12333 (2020). https://doi.org/10.1007/s11356-020-10657-8

    Article  Google Scholar 

  25. Cruz Sanchez, F.A., Boudaoud, H., Camargo, M., Pearce, J.M.: Plastic recycling in additive manufacturing: a systematic literature review and opportunities for the circular economy. J. Clean. Prod. 264, 121602 (2020). https://doi.org/10.1016/j.jclepro.2020.121602

    Article  Google Scholar 

  26. Woern, A.L., McCaslin, J.R., Pringle, A.M., Pearce, J.M.: RepRapable Recyclebot: open source 3-D printable extruder for converting plastic to 3-D printing filament. HardwareX 4, e00026 (2018). https://doi.org/10.1016/j.ohx.2018.e00026

    Article  Google Scholar 

  27. Gokhare, V.G.: A review paper on 3D-printing aspects and various processes used in the 3D-printing. Int. J. Eng. Res. Technol. 6(06), 953–958 (2017)

    Google Scholar 

  28. Nale, S., Kalbande, A.G.: A review on 3D printing technology. Int. J. Innov. Emerg. Res. Eng. 5(7), 2001–2004 (2020)

    Google Scholar 

  29. Saiyam Jain, U.S.: 3D printing. Int. J. Eng. Res. Technol. 578, 1–14 (2020). http://www.globalview.gr/2016/06/30/62949/

  30. Sai, P.C., Yeole, S.: Fused deposition modeling – insights. In: Proceedings of the International Conference on Advances in Design and Manufacturing (December 2014). https://doi.org/10.1201/9780203910795.ch8

  31. Osswald, T.A., Puentes, J., Kattinger, J.: Fused filament fabrication melting model. Addit. Manuf. 22, 51–59 (2018). https://doi.org/10.1016/j.addma.2018.04.030

    Article  Google Scholar 

  32. Leonard Mutiva, B., Byiringiro, J.B., Eng, R., Peter Muchiri, S.N.: A study on suitability of recycled polyethylene terephthalate for 3D printing filament. IOSR J. Mech. Civ. Eng. 15(2), 4–9 (2017). https://doi.org/10.9790/1684-1502030409

    Article  Google Scholar 

  33. Mohammed, M.I., Das, A., Gomez-Kervin, E., Wilson, D., Gibson, I.: Ecoprinting: investigating the use of 100% recycled acrylonitrile butadiene styrene (ABS) for additive manufacturing. In: 28th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, SFF 2017, pp. 532–542 (2020)

    Google Scholar 

  34. Whitacre, D.M.: Reviews of Environmental Contamination and Toxicology. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4614-3137-4

  35. Thompson, R.C., Swan, S.H., Moore, C.J., Vom Saal, F.S.: Our plastic age. Philos. Trans. R. Soc. B Biol. Sci. 364(1526), 1973–1976 (2009). https://doi.org/10.1098/rstb.2009.0054

    Article  Google Scholar 

  36. Proshad, R., Kormoker, T., Islam, M.S., Haque, M.A., Rahman, M.M., Mithu, M.M.R.: Toxic effects of plastic on human health and environment: a consequences of health risk assessment in Bangladesh. Int. J. Heal. 6(1), 1 (2017). https://doi.org/10.14419/ijh.v6i1.8655

    Article  Google Scholar 

  37. Alabi, O.A., Ologbonjaye, K.I., Awosolu, O., Alalade, O.E.: Public and environmental health effects of plastic wastes disposal: a review. J. Toxicol. Risk Assess.5(2), 1–13 (2019). https://doi.org/10.23937/2572-4061.1510021

  38. Ghosh, S.K.: Plastics in municipal solid waste: what, where, how and when? Waste Manag. Res. 37(11), 1061–1062 (2019). https://doi.org/10.1177/0734242X19880656

    Article  Google Scholar 

  39. Antelava, A., et al.: Plastic solid waste (PSW) in the context of life cycle assessment (LCA) and sustainable management. Environ. Manag. 64(2), 230–244 (2019). https://doi.org/10.1007/s00267-019-01178-3

    Article  Google Scholar 

  40. Ismail, B., Sc, F.B., Yassin, E.E.: Management of PET plastic bottles waste through recycling in Khartoum State. Sudan Academy of Science. Engineering, Research and Industrial Council, p. 90 (2010). https://inis.iaea.org/collection/NCLCollectionStore/_Public/44/007/44007611.pdf

  41. Webb, H.K., Arnott, J., Crawford, R.J., Ivanova, E.P.: Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers (Basel) 5(1), 1–18 (2013). https://doi.org/10.3390/polym5010001

    Article  Google Scholar 

  42. Prata, J.C., et al.: Solutions and integrated strategies for the control and mitigation of plastic and microplastic pollution. Int. J. Environ. Res. Public Health 16(13), 1–19 (2019). https://doi.org/10.3390/ijerph16132411

    Article  Google Scholar 

  43. Maris, J., Bourdon, S., Brossard, J., Cauret, L.: Mechanical recycling: compatibilization of mixed thermoplastic wastes. Polym. Degrad. Stab. 147, 245–266 (2017). https://doi.org/10.1016/j.polymdegradstab.2017.11.001

    Article  Google Scholar 

  44. Geyer, R., Jambeck, J.R., Law, K.L.: Production, use, and fate of all plastics ever made, pp. 25–29 (2017)

    Google Scholar 

  45. Gopinathan, J., Noh, I.: Recent trends in bioinks for 3D printing. Biomater. Res. 22(1), 4–7 (2018). https://doi.org/10.1186/s40824-018-0122-1

    Article  Google Scholar 

  46. Shah, J., Snider, B., Clarke, T., Kozutsky, S., Lacki, M., Hosseini, A.: Large-scale 3D printers for additive manufacturing: design considerations and challenges. Int. J. Adv. Manuf. Technol. 104(9–12), 3679–3693 (2019). https://doi.org/10.1007/s00170-019-04074-6

    Article  Google Scholar 

  47. Sciaky: Additive manufacturing (2014)

    Google Scholar 

  48. Anderson, I.: Mechanical properties of specimens 3D printed with virgin and recycled polylactic acid. 3D Print. Addit. Manuf. 4(2), 110–115 (2017). https://doi.org/10.1089/3dp.2016.0054

    Article  Google Scholar 

  49. Angatkina, K.: Recycling of HDPE from MSW waste to 3D printing filaments (2018)

    Google Scholar 

  50. Zander, N.E.: Recycled polymer feedstocks for material extrusion additive manufacturing. In: Polymer-Based Additive Manufacturing: Recent Developments, Part 3 - Recycled Polymer Feedstocks for Material Extrusion Additive Manufacturing (2019). https://doi.org/10.1021/bk-2019-1315.ch003

  51. Chong, S., Pan, G.-T., Khalid, M., Yang, T.-K., Hung, S.-T., Huang, C.-M.: Physical characterization and pre-assessment of recycled high-density polyethylene as 3D printing material. J. Polym. Environ. 25(2), 136–145 (2016). https://doi.org/10.1007/s10924-016-0793-4

    Article  Google Scholar 

  52. Baechler, C., Devuono, M., Pearce, J.M.: Distributed recycling of waste polymer into RepRap feedstock. Rapid Prototyp. J. 19(2), 118–125 (2013). https://doi.org/10.1108/13552541311302978

    Article  Google Scholar 

  53. Braanker, G.B., Flohil, J.J., Tokaya, G.E.: Developing a plastics recycling add-on for the RepRap 3D printer. Delft Univ. Technol. 42, 8–20 (2010)

    Google Scholar 

  54. Gu, F., Guo, J., Zhang, W., Summers, P.A., Hall, P.: From waste plastics to industrial raw materials: a life cycle assessment of mechanical plastic recycling practice based on a real-world case study. Sci. Total Environ. 601–602, 1192–1207 (2017). https://doi.org/10.1016/j.scitotenv.2017.05.278

    Article  Google Scholar 

  55. Albi, E., Kozel, K., Ventoza, D., Wilmoth, R.: AKABOT: 3D printing filament extruder (2014)

    Google Scholar 

  56. Wankhade, M.H., Bahaley, S.G.: Design and development of plastic filament extruder for 3D printing. IRA-Int. J. Technol. Eng. 10(03), 23–40 (2018)

    Google Scholar 

  57. Nassar, M.A., Elfarahaty, M., Ibrahim, S., Hassan, Y.: Design of 3D filament extruder for Fused Deposition Modeling (FDM) additive manufacturing. Int. Des. J. 9(4), 55–62 (2019)

    Google Scholar 

  58. Raza, S.M., Singh, D.: Experimental investigation on filament extrusion using recycled materials (2020)

    Google Scholar 

  59. Iunolainen, E.: Suitability of recycled PP for 3D PRINTING FILAMENT, p. 48 (2017)

    Google Scholar 

  60. Zander, N.E., Gillan, M., Lambeth, R.H.: Recycled polyethylene terephthalate as a new FFF feedstock material. Addit. Manuf. 21, 174–182 (2018). https://doi.org/10.1016/j.addma.2018.03.007

    Article  Google Scholar 

  61. Arendra, A., Akhmad, S., Hidayat, K., Prasnowo, M.A.: Development of low cost recycled HDPE filament extruder for 3D printing filament, pp. 2–8 (2019). https://doi.org/10.4108/eai.18-7-2019.2288536

  62. Little, H.A., Tanikella, N.G., Reich, M.J., Fiedler, M.J., Snabes, S.L., Pearce, J.M.: Towards distributed recycling with additive manufacturing of PET flake feedstocks. Materials (Basel) 13, 4273 (2020)

    Google Scholar 

  63. Nwogu, C., Anthony, O.C.: Characterization of recycled polyethylene terephthalate powder for 3D printing feedstock. Int. J. Adv. Sci. Eng. Technol. 6, 8844 (2019)

    Google Scholar 

  64. Bhadeshia, H.K.D.H.: Mechanical properties and applications of recycled polycarbonate particle material extrusion-based additive manufacturing. Mater. Sci. Technol. (U. K.) 32(7), 615–616 (2016). https://doi.org/10.1080/02670836.2016.1197523

    Article  Google Scholar 

  65. You, A., Be, M.A.Y., In, I.: Preparation and characterisation of 3D printer filament from post-used Styrofoam. In: AIP Conference Proceedings, vol. 2233, p. 020022 (May 2020)

    Google Scholar 

  66. Turku, I., Kasala, S., Kärki, T.: Characterization of polystyrene wastes as potential extruded feedstock filament for 3D printing. Recycling 3(4), 57 (2018). https://doi.org/10.3390/recycling3040057

    Article  Google Scholar 

  67. Wampol, C.: Additive Manufacturing with High Density Polyethylene : Mechanical Properties Evaluation. South Dakota State Univ. Open PRAIRIE Open Public Res. Access Institutional Repository and Information Exchange (2018)

    Google Scholar 

  68. Gkartzou, E., Koumoulos, E.P., Charitidis, C.A.: Production and 3D printing processing of bio-based thermoplastic filament. Manuf. Rev. 4, 1 (2017). https://doi.org/10.1051/mfreview/2016020

    Article  Google Scholar 

  69. Tian, X., Liu, T., Wang, Q., Dilmurat, A., Li, D., Ziegmann, G.: Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites. J. Clean. Prod. 142, 1609–1618 (2017). https://doi.org/10.1016/j.jclepro.2016.11.139

    Article  Google Scholar 

  70. Idrees, M., Jeelani, S., Rangari, V.: Three-dimensional-printed sustainable biochar-recycled PET composites. ACS Sustain. Chem. Eng. 6(11), 13940–13948 (2018). https://doi.org/10.1021/acssuschemeng.8b02283

    Article  Google Scholar 

  71. Zander, N.E.: Rubber toughened recycled polyethylene terephthalate for material extrusion additive manufacturing (2020). https://doi.org/10.1002/pi.6079

  72. Pan, G.T., Chong, S., Tsai, H.J., Lu, W.H., Yang, T.C.K.: The effects of iron, silicon, chromium, and aluminium additions on the physical and mechanical properties of recycled 3D printing filaments. Adv. Polym. Technol. 37(4), 1176–1184 (2018). https://doi.org/10.1002/adv.21777

    Article  Google Scholar 

  73. Singh, N., Singh, R., Ahuja, I.P.S.: Recycling of polymer waste with SiC/Al2O3 reinforcement for rapid tooling applications. Mater. Today Commun. 15, 124–127 (2018). https://doi.org/10.1016/j.mtcomm.2018.02.008

    Article  Google Scholar 

  74. Stoof, D., Pickering, K.: Sustainable composite fused deposition modelling filament using recycled pre-consumer polypropylene. Compos. Part B 135, 110–118 (2018). https://doi.org/10.1016/j.compositesb.2017.10.005

    Article  Google Scholar 

  75. Torres, N., Robin, J.J., Boutevin, B.: Study of thermal and mechanical properties of virgin and recycled poly (ethylene terephthalate) before and after injection molding. Eur. Polym. J. 36, 2075–2080 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shiferaw, M.Z., Gebremedhen, H.S. (2022). Recycled Polymer for FDM 3D Printing Filament Material: Circular Economy for Sustainability of Additive Manufacturing. In: Berihun, M.L. (eds) Advances of Science and Technology. ICAST 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 412. Springer, Cham. https://doi.org/10.1007/978-3-030-93712-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93712-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93711-9

  • Online ISBN: 978-3-030-93712-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics