Skip to main content

Exact Numerical Differentiation on the Infinity Computer and Applications in Global Optimization

  • Chapter
  • First Online:
Numerical Infinities and Infinitesimals in Optimization

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 43))

  • 304 Accesses

Abstract

There exist many applications where it is necessary to approximate numerically derivatives of a function f(x) which is given by a computer procedure. A novel way to efficiently compute exact derivatives (the word “exact” means here with respect to the accuracy of the implementation of f(x)) is presented in this Chapter. It uses a new kind of a supercomputer—the Infinity Computer—able to work numerically with different finite, infinite, and infinitesimal numbers. Numerical examples illustrating these concepts and numerical tools are given. In particular, the field of Lipschitz global optimization having a special interest in exact numerical differentiation is considered in cases where there exists a code for computing f(x) but a code for its derivative \(f'(x)\) is not available. In addition, it is supposed that the first derivative \(f'(x)\) satisfies the Lipschitz condition. Algorithms using smooth piece-wise quadratic support functions and their convergence conditions are discussed. All the methods are implemented both in the traditional floating-point arithmetic and in the Infinity Computing framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amodio, P., Iavernaro, F., Mazzia, F., Mukhametzhanov, M.S., Sergeyev, Y.D.: A generalized Taylor method of order three for the solution of initial value problems in standard and infinity floating-point arithmetic. Math. Comput. Simul. 141, 24–39 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Antoniotti, L., Caldarola, F., d’Atri, G., Pellegrini, M.: New approaches to basic calculus: an experimentation via numerical computation. Lect. Notes Comput. Sci. 11973 LNCS, 329–342 (2020). https://doi.org/10.1007/978-3-030-39081-5_29

  3. Antoniotti, L., Caldarola, F., Maiolo, M.: Infinite numerical computing applied to Hilbert’s, Peano’s, and Moore’s curves. Mediterr. J. Math. 17(3) (2020)

    Google Scholar 

  4. Berz, M.: Automatic differentiation as nonarchimedean analysis. In: Computer Arithmetic and Enclosure Methods, pp. 439–450. Elsevier, Amsterdam (1992)

    Google Scholar 

  5. Bischof, C., Bücker, M.: Computing derivatives of computer programs. In: Modern Methods and Algorithms of Quantum Chemistry Proceedings, NIC Series, vol. 3, 2 edn., pp. 315–327. John von Neumann Institute for Computing, Jülich (2000)

    Google Scholar 

  6. Breiman, L., Cutler, A.: A deterministic algorithm for global optimization. Math. Program. 58(1–3), 179–199 (1993)

    Article  MathSciNet  Google Scholar 

  7. Caldarola, F.: The Sierpinski curve viewed by numerical computations with infinities and infinitesimals. Appl. Math. Comput. 318, 321–328 (2018)

    MATH  Google Scholar 

  8. Calude, C.S., Dumitrescu, M.: Infinitesimal probabilities based on grossone. SN Comput. Sci. 1(36) (2020)

    Google Scholar 

  9. Cohen, J.S.: Computer Algebra and Symbolic Computation: Mathematical Methods. A K Peters Ltd, Wellesley, MA (1966)

    Google Scholar 

  10. Corliss, G., Faure, C., Griewank, A., Hascoet, L., Naumann, U. (eds.): Automatic Differentiation of Algorithms: From Simulation to Optimization. Springer, New York (2002)

    Google Scholar 

  11. D’Alotto, L.: Cellular automata using infinite computations. Appl. Math. Comput. 218(16), 8077–8082 (2012)

    MathSciNet  MATH  Google Scholar 

  12. D’Alotto, L.: Infinite games on finite graphs using grossone. Soft Comput. 55, 143–158 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Daponte, P., Grimaldi, D., Molinaro, A., Sergeyev, Y.D.: An algorithm for finding the zero-crossing of time signals with lipschitzean derivatives. Measurement 16(1), 37–49 (1995)

    Article  Google Scholar 

  14. De Leone, R., Fasano, G., Sergeyev, Y.D.: Planar methods and grossone for the conjugate gradient breakdown in nonlinear programming. Comput. Optim. Appl. 71(1), 73–93 (2018)

    Article  MathSciNet  Google Scholar 

  15. Falcone, A., Garro, A., Mukhametzhanov, M.S., Sergeyev, Y.D.: Representation of Grossone-based arithmetic in Simulink and applications to scientific computing. Soft Comput. 24, 17525–17539 (2020)

    Article  Google Scholar 

  16. Fiaschi, L., Cococcioni, M.: Non-archimedean game theory: a numerical approach. Appl. Math. Comput. (125356) (2020). https://doi.org/10.1016/j.amc.2020.125356

  17. Gaudioso, M., Giallombardo, G., Mukhametzhanov, M.S.: Numerical infinitesimals in a variable metric method for convex nonsmooth optimization. Appl. Math. Comput. 318, 312–320 (2018)

    MATH  Google Scholar 

  18. Gergel, V.P.: A global search algorithm using derivatives. In: Yu I. Neymark (Ed.), Systems Dynamics and Optimization, pp. 161–178 (1992)

    Google Scholar 

  19. Gergel, V.P., Grishagin, V.A., Israfilov, R.A.: Local tuning in nested scheme of global optimization. Procedia Comput. Sci. 51, 865–874 (2015)

    Article  Google Scholar 

  20. Grishagin, V.A.: On convergence conditions for a class of global search algorithms. In: Numerical Methods of Nonlinear Programming, pp. 82–84. KSU, Kharkov (1979). (In Russian)

    Google Scholar 

  21. Grishagin, V.A., Israfilov, R.A.: Global search acceleration in the nested optimization scheme. In: T. Simos, C. Tsitouras (eds.) Proceedings of International Conference on Numerical Analysis and Applied Mathematics (ICNAAM 2015), vol. 1738, p. 400010. AIP Publishing, NY (2016). https://doi.org/10.1063/1.4952198

  22. https://www.numericalinfinities.com

  23. Iannone, P., Rizza, D., Thoma, A.: Investigating secondary school students’ epistemologies through a class activity concerning infinity. In: Bergqvist, E., Österholm, M., Granberg, C., Sumpter, L. (eds.) Proceedings of the 42nd Conference of the International Group for the Psychology of Math. Education, vol. 3, pp. 131–138. PME, Umeå (2018)

    Google Scholar 

  24. Iavernaro, F., Mazzia, F., Mukhametzhanov, M.S., Sergeyev, Y.D.: Computation of higher order Lie derivatives on the Infinity Computer. J. Comput. Appl. Math. 383(113135) (2021)

    Google Scholar 

  25. Ingarozza, F., Adamo, M.T., Martino, M., Piscitelli, A.: A grossone-based numerical model for computations with infinity: a case study in an italian high school. Lect. Notes Comput. Sci. LNCS 11973, 451–462 (2020). https://doi.org/10.1007/978-3-030-39081-5_39

  26. Iudin, D.I., Sergeyev, Y.D., Hayakawa, M.: Interpretation of percolation in terms of infinity computations. Appl. Math. Comput. 218(16), 8099–8111 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Kvasov, D.E., Mukhametzhanov, M.S., Nasso, M.C., Sergeyev, Y.D.: On acceleration of derivative-free univariate Lipschitz global optimization methods. In: Sergeyev, Y.D., Kvasov, D. (eds), Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science, vol. 11974, pp. 413–421. Springer, Cham (2020)

    Google Scholar 

  28. Kvasov, D.E., Sergeyev, Y.D.: A univariate global search working with a set of Lipschitz constants for the first derivative. Optim. Lett. 3(2), 303–318 (2009)

    Google Scholar 

  29. Kvasov, D.E., Sergeyev, Y.D.: Lipschitz global optimization methods in control problems. Autom. Remote Control 74(9), 1435–1448 (2013)

    Article  MathSciNet  Google Scholar 

  30. Lera, D., Sergeyev, Y.D.: Acceleration of univariate global optimization algorithms working with Lipschitz functions and Lipschitz first derivatives. SIAM J. Optim. 23(1), 508–529 (2013)

    Article  MathSciNet  Google Scholar 

  31. Lyness, J.N., Moler, C.B.: Numerical differentiation of analytic functions. SIAM J. Numer. Anal. 4, 202–210 (1967)

    Article  MathSciNet  Google Scholar 

  32. Margenstern, M.: An application of grossone to the study of a family of tilings of the hyperbolic plane. Appl. Math. Comput. 218(16), 8005–8018 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Moin, P.: Fundamentals of Engineering Numerical Analysis. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  34. Muller, J.M.: Elementary Functions: Algorithms and Implementation. Birkhäuser, Boston (2006)

    MATH  Google Scholar 

  35. Pintér, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications). Kluwer Academic Publishers, Dordrecht (1996)

    Book  Google Scholar 

  36. Piyavskij, S.A.: An algorithm for finding the absolute extremum of a function. USSR Comput. Math. Math. Phys. 12(4), 57–67 (1972)

    Article  Google Scholar 

  37. Rizza, D.: A study of mathematical determination through Bertrand’s Paradox. Philosophia Mathematica 26(3), 375–395 (2018)

    Article  MathSciNet  Google Scholar 

  38. Rizza, D.: Numerical methods for infinite decision-making processes. Int. J. Unconv. Comput. 14(2), 139–158 (2019)

    Google Scholar 

  39. Sergeyev, Y.D.: A one-dimensional deterministic global minimization algorithm. Comput. Math. Math. Phys. 35(5), 705–717 (1995)

    MathSciNet  Google Scholar 

  40. Sergeyev, Y.D.: Global one-dimensional optimization using smooth auxiliary functions. Math. Program. 81(1), 127–146 (1998)

    Article  MathSciNet  Google Scholar 

  41. Sergeyev, Y.D.: On convergence of “divide the best” global optimization algorithms. Optimization 44(3), 303–325 (1998)

    Google Scholar 

  42. Sergeyev, Y.D.: Arithmetic of Infinity. Edizioni Orizzonti Meridionali, CS , 2nd ed. (2013)

    Google Scholar 

  43. Sergeyev, Y.D.: Computer system for storing infinite, infinitesimal, and finite quantities and executing arithmetical operations with them. USA patent 7,860,914 (2010)

    Google Scholar 

  44. Sergeyev, Y.D.: Higher order numerical differentiation on the Infinity Computer. Optim. Lett. 5(4), 575–585 (2011)

    Article  MathSciNet  Google Scholar 

  45. Sergeyev, Y.D.: Numerical infinities and infinitesimals: methodology, applications, and repercussions on two Hilbert problems. EMS Surv. Math. Sci. 4(2), 219–320 (2017)

    Article  MathSciNet  Google Scholar 

  46. Sergeyev, Y.D.: Independence of the grossone-based infinity methodology from non-standard analysis and comments upon logical fallacies in some texts asserting the opposite. Found. Sci. 24(1), 153–170 (2019)

    Article  Google Scholar 

  47. Sergeyev, Y.D., Garro, A.: Observability of Turing machines: a refinement of the theory of computation. Informatica 21(3), 425–454 (2010)

    Article  MathSciNet  Google Scholar 

  48. Sergeyev, Y.D., Mukhametzhanov, M.S., Kvasov, D.E., Lera, D.: Derivative-free local tuning and local improvement techniques embedded in the univariate global optimization. J. Optim. Theory Appl. 171(1), 186–208 (2016)

    Article  MathSciNet  Google Scholar 

  49. Sergeyev, Y.D., Nasso, M.C., Mukhametzhanov, M.S., Kvasov, D.E.: Novel local tuning techniques for speeding up one dimensional algorithms in expensive global optimization using lipschitz derivatives. J. Comput. Appl. Math. 383(113134) (2021)

    Google Scholar 

  50. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

    Book  Google Scholar 

  51. Zhigljavsky, A.: Computing sums of conditionally convergent and divergent series using the concept of grossone. Appl. Math. Comput. 218(16), 8064–8076 (2012)

    MathSciNet  MATH  Google Scholar 

  52. Žilinskas, A.: On strong homogeneity of two global optimization algorithms based on statistical models of multimodal objective functions. Appl. Math. Comput. 218(16), 8131–8136 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Chiara Nasso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nasso, M.C., Sergeyev, Y.D. (2022). Exact Numerical Differentiation on the Infinity Computer and Applications in Global Optimization. In: Sergeyev, Y.D., De Leone, R. (eds) Numerical Infinities and Infinitesimals in Optimization. Emergence, Complexity and Computation, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-030-93642-6_9

Download citation

Publish with us

Policies and ethics