Skip to main content

Synthesis of Transition Metal Dichalcogenides (TMDs)

  • Chapter
  • First Online:
Progress in Nanoscale and Low-Dimensional Materials and Devices

Abstract

Two-dimensional (2D) materials or van der Waals materials typically have strong in-plane covalent bonds and weak out-of-plane van der Waals forces. The van der Waals materials form stable atomically-thin structures. Graphene can be produced via mechanical exfoliation from highly ordered pyrolytic graphite (HOPG), from which many unique and superior properties have been revealed. The graphene research's success and the lack of semiconductor properties have led to the exploration of other inorganic 2D materials beyond graphene. These materials include transition metal dichalcogenides (TMDs), phosphorene, and MXene. TMDs have attracted considerable attention as core materials for next-generation semiconductor devices owing to their unique electrical, mechanical, chemical, and optical properties. This chapter discusses several methods to synthesize TMDs and to manipulate the properties of TMDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Zhang, T.-R. Chang, B. Zhou et al., Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 9, 111–115 (2014)

    Article  CAS  Google Scholar 

  2. K.F. Mak, C. Lee, J. Hone et al., Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105, 2–5 (2010)

    Article  Google Scholar 

  3. I.G. Lezama, A. Arora, A. Ubaldini et al., Indirect-to-Direct Band Gap Crossover in Few-Layer MoTe2. Nano Lett. 15, 2336–2342 (2015)

    Article  CAS  Google Scholar 

  4. H.J. Conley, B. Wang, J.I. Ziegler et al., Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013)

    Article  CAS  Google Scholar 

  5. W. Zhao, Z. Ghorannevis, L. Chu et al., Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013)

    Article  CAS  Google Scholar 

  6. A. Arora, M. Koperski, K. Nogajewski et al., Excitonic resonances in thin films of WSe2: from monolayer to bulk material. Nanoscale 7, 10421–10429 (2015)

    Article  CAS  Google Scholar 

  7. M.M. Ugeda, A.J. Bradley, S.-F. Shi et al., Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater 13, 1091–1095 (2014)

    Article  CAS  Google Scholar 

  8. V.O. Özçelik, J.G. Azadani, C. Yang, et al. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B 94, 035125 (2016)

    Google Scholar 

  9. C.-H. Lee, G.-H. Lee, A.M. van der Zande et al., Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014)

    Article  CAS  Google Scholar 

  10. J. Kang, S. Tongay, J. Zhou, et al., Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013)

    Google Scholar 

  11. X. Li, H. Zhu, Two-dimensional MoS2: Properties, preparation, and applications. J. Mater. 1, 33–44 (2015)

    Google Scholar 

  12. A. Dodda, A. Oberoi, A. Sebastian et al., Stochastic resonance in MoS2 photodetector. Nat. Commun. 11, 4406 (2020)

    Article  CAS  Google Scholar 

  13. L.-Y. Gan, Q. Zhang, Y. Cheng et al., Photovoltaic heterojunctions of fullerenes with MoS2 and WS2 monolayers. J. Phys. Chem. Lett. 5, 1445–1449 (2014)

    Article  CAS  Google Scholar 

  14. M. Bernardi, M. Palummo, J.C. Grossman, Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664–3670 (2013)

    Article  CAS  Google Scholar 

  15. H. Zeng, J. Dai, W. Yao et al., Valley polarization in MoS2 monolayers by optical pumping. Nat Nanotechnol. 7, 490–493 (2012)

    Article  CAS  Google Scholar 

  16. D. Xiao, G.-B. Liu, W. Feng, et al., Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012)

    Google Scholar 

  17. M. Zhong, C. Shen, L. Huang, et al., Electronic structure and exciton shifts in Sb-doped MoS2 monolayer. npj 2D Mater Appl. 3, 1 (2019)

    Google Scholar 

  18. H. Kwon, P.J. Jeon, J.S. Kim, et al., Large scale MoS2 nanosheet logic circuits integrated by photolithography on glass. 2D Mater, 3, 044001 (2016)

    Google Scholar 

  19. O. Lopez-Sanchez, D. Lembke, M. Kayci et al., Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol. 8, 497–501 (2013)

    Article  CAS  Google Scholar 

  20. C. Li, Q. Cao, F. Wang et al., Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev. 47, 4981–5037 (2018)

    Article  CAS  Google Scholar 

  21. S. Barua, H.S. Dutta, S. Gogoi et al., Nanostructured MoS2-based advanced biosensors: a review. ACS Appl. Nano Mater. 1, 2–25 (2018)

    Article  CAS  Google Scholar 

  22. L. Madauß, I. Zegkinoglou, H. Vázquez Muiños et al., Highly active single-layer MoS2 catalysts synthesized by swift heavy ion irradiation. Nanoscale 10, 22908–22916 (2018)

    Article  Google Scholar 

  23. K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  CAS  Google Scholar 

  24. H. Li, J. Wu, Z. Yin et al., Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 47, 1067–1075 (2014)

    Article  CAS  Google Scholar 

  25. H. Yuan, D. Dubbink, R. Besselink et al., The rapid exfoliation and subsequent restacking of layered titanates driven by an acid-base reaction. Angew. Chemie 54, 9239–9243 (2015)

    Article  CAS  Google Scholar 

  26. S. Masubuchi, M. Morimoto, S. Morikawa et al., Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nat. Commun. 9, 1413 (2018)

    Article  Google Scholar 

  27. H. Li, J. Wu, X. Huang et al., Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 7, 10344–10353 (2013)

    Article  CAS  Google Scholar 

  28. A.E. Del Rio-Castillo, C. Merino, E. Díez-Barra et al., Selective suspension of single layer graphene mechanochemically exfoliated from carbon nanofibres. Nano Res. 7, 963–972 (2014)

    Article  CAS  Google Scholar 

  29. J. Chen, M. Duan, G. Chen, Continuous mechanical exfoliation of graphene sheets via three-roll mill. J. Mater. Chem. 22, 19625 (2012)

    Article  CAS  Google Scholar 

  30. P. Institution of Engineering and Technology, P.T. Baine, J.H. Montgomery, et al., Micro Nano Lett. Institution of Engineering and Technology (2006)

    Google Scholar 

  31. J. Shim, S.-H. Bae, W. Kong et al., Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018)

    Article  CAS  Google Scholar 

  32. S.B. Desai, S.R. Madhvapathy, M. Amani et al., Gold-mediated exfoliation of ultralarge optoelectronically-perfect monolayers. Adv. Mater. 28, 4053–4058 (2016)

    Article  CAS  Google Scholar 

  33. W. Li, Y. Zhang, X. Long, et al., Gas sensors based on mechanically exfoliated MoS2 nanosheets for room-temperature NO2 detection. Sens. 19, 2123 (2019)

    Google Scholar 

  34. K.S. Novoselov, D. Jiang, F. Schedin, et al., Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U S A 102, 10451 LP–10453 (2005)

    Google Scholar 

  35. M. Velický, G.E. Donnelly, W.R. Hendren et al., Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers. ACS Nano 12, 10463–10472 (2018)

    Article  Google Scholar 

  36. X. Lu, M.I.B. Utama, J. Zhang et al., Layer-by-layer thinning of MoS2 by thermal annealing. Nanoscale 5, 8904–8908 (2013)

    Article  CAS  Google Scholar 

  37. L. Hu, X. Shan, Y. Wu et al., Laser thinning and patterning of MoS2 with layer-by-layer precision. Sci. Rep. 7, 15538 (2017)

    Article  Google Scholar 

  38. A. Castellanos-Gomez, M. Barkelid, A.M. Goossens et al., Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett. 12, 3187–3192 (2012)

    Article  CAS  Google Scholar 

  39. H. Li, Q. Zhang, C.C.R. Yap et al., From bulk to monolayer MoS2: evolution of raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012)

    Article  CAS  Google Scholar 

  40. F. Torrisi, T. Hasan, W. Wu et al., Inkjet-printed graphene electronics. ACS Nano 6, 2992–3006 (2012)

    Article  CAS  Google Scholar 

  41. X. Zeng, H. Hirwa, S. Metel et al., Solution processed thin film transistor from liquid phase exfoliated MoS2 flakes. Solid State Electron 141, 58–64 (2018)

    Article  CAS  Google Scholar 

  42. P. Blake, P.D. Brimicombe, R.R. Nair et al., Graphene-based liquid crystal device. Nano Lett. 8, 1704–1708 (2008)

    Article  Google Scholar 

  43. J. Xiao, D. Choi, L. Cosimbescu et al., Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem. Mater. 22, 4522–4524 (2010)

    Article  CAS  Google Scholar 

  44. J. Shen, Y. He, J. Wu et al., Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components. Nano Lett. 15, 5449–5454 (2015)

    Article  CAS  Google Scholar 

  45. Z. Zeng, Z. Yin, X. Huang et al., Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chemie 50, 11093–11097 (2011)

    Article  CAS  Google Scholar 

  46. S.P. Ogilvie, M.J. Large, G. Fratta et al., Considerations for spectroscopy of liquid-exfoliated 2D materials: emerging photoluminescence of N-methyl-2-pyrrolidone. Sci. Rep. 7, 16706 (2017)

    Article  Google Scholar 

  47. D. Wang, F. Wu, Y. Song et al., Large-scale production of defect-free MoS2 nanosheets via pyrene-assisted liquid exfoliation. J. Alloys Compd. 728, 1030–1036 (2017)

    Article  CAS  Google Scholar 

  48. J.H. Lee, W.S. Jang, S.W. Han et al., Efficient hydrogen evolution by mechanically strained MoS 2 nanosheets. Langmuir 30, 9866–9873 (2014)

    Article  CAS  Google Scholar 

  49. S. Shi, Z. Sun, Y.H. Hu, Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS2. J. Mater. Chem. A 6, 23932–23977 (2018)

    Article  CAS  Google Scholar 

  50. X. Fan, P. Xu, D. Zhou et al., Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett. 15, 5956–5960 (2015)

    Article  CAS  Google Scholar 

  51. G. Eda, H. Yamaguchi, D. Voiry et al., Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011)

    Article  CAS  Google Scholar 

  52. P. Blake, E.W. Hill, A.H. Castro Neto, et al., Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007)

    Google Scholar 

  53. X. Wang, K. Kang, S. Chen, et al., Location-specific growth and transfer of arrayed MoS2 monolayers with controllable size. 2D Mater. 4, 025093 (2017)

    Google Scholar 

  54. J. Jeon, S.K. Jang, S.M. Jeon et al., Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale 7, 1688–1695 (2015)

    Article  CAS  Google Scholar 

  55. H. Xu, W. Zhou, X. Zheng et al., Control of the nucleation density of molybdenum disulfide in large-scale synthesis using chemical vapor deposition. Materials (Basel) 11, 870 (2018)

    Article  Google Scholar 

  56. E.Z. Xu, H.M. Liu, K. Park et al., p-Type transition-metal doping of large-area MoS2 thin films grown by chemical vapor deposition. Nanoscale 9, 3576–3584 (2017)

    Article  CAS  Google Scholar 

  57. K. Zhang, S. Feng, J. Wang et al., Manganese doping of monolayer MoS2: the substrate is critical. Nano Lett. 15, 6586–6591 (2015)

    Article  CAS  Google Scholar 

  58. T. Hallam, S. Monaghan, F. Gity, et al., Rhenium-doped MoS2 films. Appl. Phys. Lett. 111, 203101 (2017)

    Google Scholar 

  59. S. Das, M. Demarteau, A. Roelofs, Nb-doped single crystalline MoS2 field effect transistor. Appl. Phys. Lett. 106, 173506 (2015)

    Google Scholar 

  60. Y. Kim, H. Bark, G.H. Ryu, et al., Wafer-scale monolayer MoS2 grown by chemical vapor deposition using a reaction of MoO3 and H2 S. J. Phys. Condens. Matter. 28, 184002 (2016)

    Google Scholar 

  61. H. Yu, M. Liao, W. Zhao et al., Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 11, 12001–12007 (2017)

    Article  CAS  Google Scholar 

  62. H. Li, Y. Li, A. Aljarb et al., Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: growth mechanism, controllability, and scalability. Chem. Rev. 118, 6134–6150 (2018)

    Article  CAS  Google Scholar 

  63. Q. Yu, J. Lian, S. Siriponglert, et al., Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 93, 113103 (2008)

    Google Scholar 

  64. A. Reina, S. Thiele, X. Jia et al., Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2, 509–516 (2009)

    Article  CAS  Google Scholar 

  65. K.F. McCarty, P.J. Feibelman, E. Loginova et al., Kinetics and thermodynamics of carbon segregation and graphene growth on Ru(0 0 0 1). Carbon N Y 47, 1806–1813 (2009)

    Article  CAS  Google Scholar 

  66. J. You, M.D. Hossain, Z. Luo, Synthesis of 2D transition metal dichalcogenides by chemical vapor deposition with controlled layer number and morphology. Nano Converg. 5, 26 (2018)

    Article  Google Scholar 

  67. J.D. Cain, F. Shi, J. Wu et al., Growth mechanism of transition metal dichalcogenide monolayers: the role of self-seeding fullerene nuclei. ACS Nano 10, 5440–5445 (2016)

    Article  CAS  Google Scholar 

  68. D. Zhou, H. Shu, C. Hu et al., Unveiling the growth mechanism of MoS2 with chemical vapor deposition: from two-dimensional planar nucleation to self-seeding nucleation. Cryst. Growth Des. 18, 1012–1019 (2018)

    Article  CAS  Google Scholar 

  69. N. Imanishi, K. Kanamura, Z. Takehara, Synthesis of MoS[sub 2] thin film by chemical vapor deposition method and discharge characteristics as a cathode of the lithium secondary battery. J. Electrochem. Soc. 139, 2082 (1992)

    Article  CAS  Google Scholar 

  70. Y.-H. Lee, X.-Q. Zhang, W. Zhang et al., Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012)

    Article  CAS  Google Scholar 

  71. T.H. Choudhury, X. Zhang, Z.Y. Al Balushi et al., Epitaxial growth of two-dimensional layered transition metal dichalcogenides. Annu. Rev. Mater. Res. 50, 155–177 (2020)

    Article  CAS  Google Scholar 

  72. K. Kang, K. Godin, Y.D. Kim et al., Graphene-assisted antioxidation of tungsten disulfide monolayers: substrate and electric-field effect. Adv. Mater. 29, 1603898 (2017)

    Article  Google Scholar 

  73. K. Kang, K. Godin, E.H. Yang, The growth scale and kinetics of WS2 monolayers under varying H2 concentration. Sci. Rep. 5, 13205 (2015)

    Article  CAS  Google Scholar 

  74. S. Wang, Y. Rong, Y. Fan et al., Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem. Mater. 26, 6371–6379 (2014)

    Article  CAS  Google Scholar 

  75. S.Y. Yang, G.W. Shim, S.-B. Seo et al., Effective shape-controlled growth of monolayer MoS2 flakes by powder-based chemical vapor deposition. Nano Res. 10, 255–262 (2017)

    Article  CAS  Google Scholar 

  76. D. Dumcenco, D. Ovchinnikov, K. Marinov et al., Large-area epitaxial monolayer MoS2. ACS Nano 9, 4611–4620 (2015)

    Article  CAS  Google Scholar 

  77. J.S. Lee, S.H. Choi, S.J. Yun, et al., Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science (80), 362, 817–821 (2018)

    Google Scholar 

  78. Y. Yu, F. Yang, X.F. Lu et al., Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat Nanotechnol. 10, 270–276 (2015)

    Article  CAS  Google Scholar 

  79. X. Wang, H. Liu, J. Wu, et al., Chemical growth of 1T-TaS(2) monolayer and thin films: robust charge density wave transitions and high bolometric responsivity. Adv. Mater. 30, e1800074 (2018)

    Google Scholar 

  80. J. Li, S. Cheng, Z. Liu et al., Centimeter-scale, large-area, few-layer 1T′-WTe2 films by chemical vapor deposition and its long-term stability in ambient condition. J. Phys. Chem. C 122, 7005–7012 (2018)

    Article  CAS  Google Scholar 

  81. J. Nishizawa, T. Kurabayashi, Mechanism of gallium arsenide MOCVD. Vacuum 41, 958–962 (1990)

    Article  CAS  Google Scholar 

  82. J. Nishizawa, T. Kurabayashi, On the reaction mechanism of GaAs MOCVD. J. Electrochem. Soc. 130, 413 (1983)

    Article  CAS  Google Scholar 

  83. T. Institution of Electrical Engineers, S. Hattori, S. Sakai, et al., Electron. Lett. [Institution of Electrical Engineers] (1984)

    Google Scholar 

  84. T. Kim, H. Park, D. Joung et al., Wafer-scale epitaxial 1T′, 1T′–2H mixed, and 2H phases MoTe2 thin films grown by metal–organic chemical vapor deposition. Adv. Mater. Interfaces 5, 1800439 (2018)

    Article  Google Scholar 

  85. K. Kang, S. Xie, L. Huang et al., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015)

    Article  CAS  Google Scholar 

  86. S.M. Eichfeld, L. Hossain, Y.-C. Lin et al., Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. ACS Nano 9, 2080–2087 (2015)

    Article  CAS  Google Scholar 

  87. B. Kalanyan, W.A. Kimes, R. Beams et al., Rapid wafer-scale growth of polycrystalline 2H-MoS2 by pulsed metal-organic chemical vapor deposition. Chem. Mater. 29, 6279–6288 (2017)

    Article  CAS  Google Scholar 

  88. T. Goldstein, S.-Y. Chen, J. Tong et al., Raman scattering and anomalous Stokes–anti-Stokes ratio in MoTe2 atomic layers. Sci. Rep. 6, 28024 (2016)

    Article  CAS  Google Scholar 

  89. D. Hu, G. Xu, L. Xing et al., Two-dimensional semiconductors grown by chemical vapor transport. Angew. Chemie 56, 3611–3615 (2017)

    Article  CAS  Google Scholar 

  90. M. Dave, R. Vaidya, S.G. Patel et al., High pressure effect on MoS2 and MoSe2 single crystals grown by CVT method. Bull. Mater. Sci. 27, 213–216 (2004)

    Article  CAS  Google Scholar 

  91. A. Ubaldini, J. Jacimovic, N. Ubrig et al., Chloride-driven chemical vapor transport method for crystal growth of transition metal dichalcogenides. Cryst. Growth Des. 13, 4453–4459 (2013)

    Article  CAS  Google Scholar 

  92. S. Tiefenbacher, H. Sehnert, C. Pettenkofer et al., Epitaxial films of WS2 by metal organic van der Waals epitaxy (MO-VDWE). Surf. Sci. 318, L1161–L1164 (1994)

    Article  CAS  Google Scholar 

  93. Q. He, P. Li, Z. Wu, et al., Molecular beam epitaxy scalable growth of wafer‐scale continuous semiconducting monolayer MoTe 2 on inert amorphous dielectrics. Adv. Mater., 1901578 (2019)

    Google Scholar 

  94. R.F.C. Farrow, Molecular beam epitaxy: applications to key materials. Noyes Publications (1995)

    Google Scholar 

  95. N. Briggs, S. Subramanian, Z. Lin, et al., A roadmap for electronic grade 2D materials. 2D Mater 6, 22001 (2019)

    Google Scholar 

  96. A. Koma, K. Saiki, Y. Sato, Heteroepitaxy of a two-dimensional material on a three-dimensional material. Appl. Surf. Sci. 41–42, 451–456 (1990)

    Article  Google Scholar 

  97. D. Fu, X. Zhao, Y.-Y. Zhang et al., Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride. J. Am. Chem. Soc. 139, 9392–9400 (2017)

    Article  CAS  Google Scholar 

  98. S. Sasaki, Y. Kobayashi, Z. Liu, et al., Growth and optical properties of Nb-doped WS2 monolayers. Appl. Phys. Express 9, 071201 (2016)

    Google Scholar 

  99. S.K. Pandey, H. Alsalman, J.G. Azadani et al., Controlled p-type substitutional doping in large-area monolayer WSe2 crystals grown by chemical vapor deposition. Nanoscale 10, 21374–21385 (2018)

    Article  CAS  Google Scholar 

  100. M.R. Laskar, D.N. Nath, L. Ma, et al.. p-type doping of MoS 2 thin films using Nb. Appl. Phys. Lett. 104, 092104 (2014)

    Google Scholar 

  101. S. Mouri, Y. Miyauchi, K. Matsuda, Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 13, 5944–5948 (2013)

    Article  CAS  Google Scholar 

  102. W.H. Chae, J.D. Cain, E.D. Hanson, et al., Substrate-induced strain and charge doping in CVD-grown monolayer MoS2. Appl. Phys. Lett. 111, 143106 (2017)

    Google Scholar 

  103. Y. Kim, H. Bark, B. Kang et al., Wafer-scale substitutional doping of monolayer MoS2 films for high-performance optoelectronic devices. ACS Appl. Mater. Interfaces 11, 12613–12621 (2019)

    Article  CAS  Google Scholar 

  104. F. Cadiz, E. Courtade, C. Robert, et al., Excitonic linewidth approaching the homogeneous limit in MoS2-based van der waals heterostructures. Phys Rev X 7, 021026 (2017)

    Google Scholar 

  105. J. Gusakova, X. Wang, L.L. Shiau et al., Electronic properties of bulk and monolayer TMDs: theoretical study within DFT framework (GVJ-2e method). Phys. Status Solidi 214, 1700218 (2017)

    Article  Google Scholar 

  106. S. Tongay, D.S. Narang, J. Kang, et al., Two-dimensional semiconductor alloys: monolayer Mo1−x Wx Se2. Appl. Phys. Lett. 104, 012101 (2014)

    Google Scholar 

  107. K. Zhang, B.M. Bersch, J. Joshi et al., Tuning the electronic and photonic properties of monolayer MoS2 via in situ rhenium substitutional doping. Adv. Funct. Mater. 28, 1706950 (2018)

    Article  Google Scholar 

  108. J. Suh, T.-E. Park, D.-Y. Lin et al., Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. Nano Lett. 14, 6976–6982 (2014)

    Article  CAS  Google Scholar 

  109. S. Fu, K. Kang, K. Shayan et al., Enabling room temperature ferromagnetism in monolayer MoS2 via in situ iron-doping. Nat. Commun. 11, 2034 (2020)

    Article  CAS  Google Scholar 

  110. S.J. Yun, D.L. Duong, D.M. Ha, et al., Ferromagnetic order at room temperature in monolayer WSe(2) semiconductor via vanadium dopant. Adv Sci (Weinheim, Baden-Wurttemberg, Ger) 7, 1903076 (2020)

    Google Scholar 

  111. H. Li, X. Duan, X. Wu et al., Growth of alloy MoS2x Se 2(1–x ) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 136, 3756–3759 (2014)

    Article  CAS  Google Scholar 

  112. X. Duan, C. Wang, Z. Fan et al., Synthesis of WS2x Se2–2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 16, 264–269 (2016)

    Article  CAS  Google Scholar 

  113. L. Yang, K. Majumdar, H. Liu et al., Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 14, 6275–6280 (2014)

    Article  CAS  Google Scholar 

  114. A. Azcatl, X. Qin, A. Prakash et al., Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Lett. 16, 5437–5443 (2016)

    Article  CAS  Google Scholar 

  115. A. Rawat, R. Ahammed, et al., Solar energy harvesting in type II van der waals heterostructures of semiconducting group III monochalcogenide monolayers. J. Phys. Chem. C 123, 12666–12675 (2019)

    Google Scholar 

  116. A.-Y. Lu, H. Zhu, J. Xiao et al., Janus monolayers of transition metal dichalcogenides. Nat Nanotechnol. 12, 744–749 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eui-Hyeok Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kang, K., Chen, S., Fu, S., Yang, EH. (2022). Synthesis of Transition Metal Dichalcogenides (TMDs). In: Ünlü, H., Horing, N.J.M. (eds) Progress in Nanoscale and Low-Dimensional Materials and Devices. Topics in Applied Physics, vol 144. Springer, Cham. https://doi.org/10.1007/978-3-030-93460-6_4

Download citation

Publish with us

Policies and ethics