Skip to main content

Simple Negative Sampling for Link Prediction in Knowledge Graphs

  • Conference paper
  • First Online:
Complex Networks & Their Applications X (COMPLEX NETWORKS 2021)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1073))

Included in the following conference series:

Abstract

Knowledge graph (KG) embedding methods learn the low dimensional vector representations of entities and relations of a knowledge graph, facilitating the link prediction task in knowledge graphs. During learning of embeddings, sampling negative triples is important because KGs have only observed positive triples. To the best of our knowledge, uniform-random, generative adversarial network (GAN)-based, and NSCaching, structure aware negative sampling (SANS) are four negative sampling methods in the literature. Unfortunately, they suffer from computational and memory inefficiency problems. In addition, their prediction performance are affected by the ‘vanishing gradient’ problem because of poor quality of sampled negative triples. In this paper, we propose a simple negative sampling (SNS) method based on the assumption that the entities which are closer in the embedding space to the corrupted entity are able to provide high-quality negative triples. Furthermore SNS has a good exploitation potential as it uses sampled high-quality negatives for improving the quality of negative triples in next steps. We evaluate our sampling method through link prediction task on five well-known knowledge graph datasets, WN18, WN18RR, FB15K, FB15K-237, YAGO3-10. The method is also evaluated on a new biological KG dataset (FIGHT-HF-23R). Experimental results show that the SNS improves the prediction performance of KG embedding models, and outperforms the existing sampling methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://gitlab.inria.fr/kislam/sns.

References

  1. Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semant. Web 8(3), 489–508 (2017)

    Article  Google Scholar 

  2. Dong, X., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 601–610 (2014)

    Google Scholar 

  3. Cai, L., Wang, W.Y.: KBGAN: adversarial learning for knowledge graph embeddings. In: 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1470–1480 (2018)

    Google Scholar 

  4. Zhang, Y., Yao, Q., Shao, Y., Chen, L.: NSCaching: simple and efficient negative sampling for knowledge graph embedding. In: 2019 IEEE 35th International Conference on Data Engineering, pp. 614–625 (2019)

    Google Scholar 

  5. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  6. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, vol. 26, pp. 1–9 (2013)

    Google Scholar 

  7. Hu, K., Liu, H., Hao, T.: A knowledge selective adversarial network for link prediction in knowledge graph. In: Tang, J., Kan, MY., Zhao, D., Li, S., Zan, H. (eds.) CCF International Conference on Natural Language Processing and Chinese Computing. LNCS, vol. 11838, pp. 171–183. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32233-5_14

  8. Wang, P., Li, S., Pan, R.: Incorporating GAN for negative sampling in knowledge representation learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  9. Ahrabian, K., Feizi, A., Salehi, Y., Hamilton, W.L., Bose, A.J.: Structure aware negative sampling in knowledge graphs. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pp. 6093–6101 (2020)

    Google Scholar 

  10. Chen, J., Xin, B., Peng, Z., Dou, L., Zhang, J.: Optimal contraction theorem for exploration-exploitation tradeoff in search and optimization. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 39(3), 680–691 (2009)

    Article  Google Scholar 

  11. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28, no. 1, pp. 1112–1119 (2014)

    Google Scholar 

  12. Yang, B., Yih, W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: International Conference Learning Representation (2014)

    Google Scholar 

  13. Bresso, E., et al.: A data science approach for exploring differential expression profiles of genes in transcriptomic studies-application to the understanding of ageing in obese and lean rats in the FIGHT-HF project. In: JOBIM 2018-Journées Ouvertes Biologie, Informatique et Mathématiques (2018)

    Google Scholar 

  14. Wang, M., Qiu, L., Wang, X.: A survey on knowledge graph embeddings for link prediction. Symmetry 13(3), 485 (2021)

    Article  Google Scholar 

  15. Rossi, A., Matinata, A.: Knowledge graph embeddings: are relation-learning models learning relations? In: EDBT/ICDT Workshops (2020)

    Google Scholar 

  16. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, vol. 1, pp. 687–696 (2015)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representation (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Kamrul Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Islam, M.K., Aridhi, S., Smail-Tabbone, M. (2022). Simple Negative Sampling for Link Prediction in Knowledge Graphs. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence, vol 1073. Springer, Cham. https://doi.org/10.1007/978-3-030-93413-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93413-2_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93412-5

  • Online ISBN: 978-3-030-93413-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics