Skip to main content

Uncertainty Budget for Static Stiffness Measurement According to ISO 230-1

  • Conference paper
  • First Online:
Mechatronics—Trending Future Industries (MECHATRONICS 2020)

Abstract

Static stiffness of machine tools is considered as a significant factor as it affects to machine performance and accuracy under load. The main purpose of this paper is to present the uncertainty budgets for static stiffness measurement results. The uncertainty budget has a very important practical aspect. It allows to isolate some components that contribute the most to the combined measurement uncertainty. This paper presents a measurement procedure to measure static stiffness which is in line with ISO 230-1. The conditions that must be met to minimize the considered uncertainty components in the budget of the complex uncertainty are described. The comparison of the results shows that the uncertainty of typical sensors is not the main component in uncertainty budgets. However, conducted analyses indicated some crucial factors that should be taken into account: averaging method, type of signal filtration, influence of environmental conditions or confirmations of the consistency of measuring instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ISO 230-1:2012.: Test code for machine tools. Part 1: geometric accuracy of machines operation under no-load or finishing conditions, ISO, Geneva (2017)

    Google Scholar 

  2. Archenti, A., Nicolescu, M., Casterman, G., Hjelm, S.: A new method for circular testing of machine tools under loaded condition. Procedia CIRP 1, 575–580 (2012)

    Article  Google Scholar 

  3. Archenti, A., Laspas, T.: Accuracy and performance analysis of machine tools. In: Gao, W., (eds.), Metrology Precision Manufacturing, pp. 215–244. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-4938-5_7

  4. Røsjordet, J.F., Hovland, G.: Methods for experimentally determining stiffness of a multi-axis machining centre. Model. Identifi. Control 40(1), 11–25 (2019). ISSN 1890-1328, https://doi.org/10.4173/mic.2019.1.2

  5. Gao, X., Li, B., Hong, J., Guo, J.: Stiffness modeling of machine tools based on machining space analysis. Int. J. Adv. Manuf. Technol. 86, 2093–2106 (2016). https://doi.org/10.1007/s00170-015-8336-z

    Article  Google Scholar 

  6. www.rcmt.cvut.cz/zkuslab/en/text/36. Accessed 07 Oct 2019

  7. Archenti, A.: A computational framework for control of machining system capability. Ph.D. thesis. KTH Royal Institute of Technology, Stockholm Sweden (2011). ISBN 978-91-7501-162-2

    Google Scholar 

  8. Salgado, M.A., López de Lacalle, L.N., Lamikiz, A., Muñoa, J., Sánchez, J.A.: Evaluation of the stiffness chain on the deflection of end-mills under cutting forces. Int. J. Mach. Tool Manuf. 45(6), 727–739 (2005). https://doi.org/10.1016/j.ijmachtools.2004.08.023

    Article  Google Scholar 

  9. Sarhan, A.A.D., Matsubara, A.: Investigation about the characterization of machine tool spindle stiffness for intelligent CNC end milling. Robot. Comput.-Integr. Manuf. (34), 133–139 (2015). https://doi.org/10.1016/j.rcim.2014.12.001

  10. Stejskal, T., Svetlík, J., Dovica, M., Demeč, P., Kráľ, J.: Measurement of static stiffness after motion on a three-axis CNC milling table. Appl. Sci. 8(1), 15 (2018). https://doi.org/10.3390/app8010015

    Article  Google Scholar 

  11. www.planlauf.com/en/measurement/stiffness-measurement. Accessed 07 Oct 2019

  12. Archenti, A.: Prediction of machined part accuracy from machining system capability. Ann. CIRP 63(1), 505–550 (2014)

    Article  Google Scholar 

  13. Archenti, A., Nicolescu, M.: A top-down equivalent stiffness approach for prediction of deviation sources in machine tool joints. Ann. CIRP 66(1), 487–490 (2017)

    Article  Google Scholar 

  14. Archenti, A., Nicolescu, M.: Accuracy analysis of machine tools using elastically linked systems. Ann. CIRP 62(1), 503–506 (2013)

    Article  Google Scholar 

  15. Szipka, K., Dax, P., Archenti, A., et al.: Integration of machining system capability information into CAx software environment for complex tool trajectory prediction. CIRP Procedia 72, 1239–1244 (2018). https://doi.org/10.1016/j.procir.2018.03.015

    Article  Google Scholar 

  16. Majda, P., Jastrzębska, J.: Measurement uncertainty of generalized stiffness of machine tools. Measurement 170 (2021). https://doi.org/10.1016/j.measurement.2020.108692

  17. www.ni.com/pdf/manuals/376022d.pdf. Accessed 20 Oct 2019

  18. www.ni.com/pdf/manuals/372125f.pdf. Accessed 20 Oct 2019

  19. www.lionprecision.com/wp-content/uploads/2019/04/CAP-CPL190-CPL290-Brochure.pdf. Accessed 20 Oct 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Majda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Majda, P., Jastrzębska, J. (2022). Uncertainty Budget for Static Stiffness Measurement According to ISO 230-1. In: Powałka, B., Parus, A., Chodźko, M., Szewczyk, R. (eds) Mechatronics—Trending Future Industries. MECHATRONICS 2020. Lecture Notes in Networks and Systems, vol 377. Springer, Cham. https://doi.org/10.1007/978-3-030-93377-7_8

Download citation

Publish with us

Policies and ethics