Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 414))

Abstract

Handling huge quantities of hazardous materials put the process industries into a variety of devastating risks. Fault tree (FT) and Event tree (ET) analysis methods are two distinct tools that are often used in process risk assessment. Bow-Tie analysis (BTA) as a comprehensive quantitative risk assessment (QRA) model, integrates the FT and ET in a common platform to establish a logical connection between causes of an undesirable event and their consequences. To conduct a QRA, it is necessary to estimate the failure probability of basic events and safety barriers. After estimating the severity of the potential consequences, the risk values should be estimated. Experts’ judgment elicitation is often employed in QRA due to the scarcity of crisp and precise data. This chapter intends to address an uncertainty aspect (i.e., subjectivity in expert judgment/knowledge) in BTA and applies the fuzzy set theory (FST) to deal with vagueness and imprecision associated with knowledge-based uncertainties. Furthermore, a comprehensive review of the application of FST and Fuzzy interface system in the Bow-tie model in safety and reliability engineering is presented. To demonstrate the applicability of the fuzzy set theory, a Bow-tie diagram of a distillation unit is developed and analyzed by integrating FST into the risk model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AIChE. Chemical process quantitative risk analysis. Guidelines Chem. Process Quantitative Risk Anal., pp. 1–55 (2010)

    Google Scholar 

  2. A. Shahriar, R. Sadiq, S. Tesfamariam, Risk analysis for oil & gas pipelines: a sustainability assessment approach using fuzzy based bow-tie analysis. J. Loss Prev. Process Ind. 25(3), 505–523 (2012)

    Article  Google Scholar 

  3. R. Ferdous, F. Khan, R. Sadiq, P. Amyotte, B. Veitch, Analyzing system safety and risks under uncertainty using a bow-tie diagram: An innovative approach. Process Saf. Environ. Prot. 91(1–2), 1–18 (2013)

    Article  Google Scholar 

  4. R. Ferdous, F. Khan, R. Sadiq, P. Amyotte, B. Veitch, Handling and updating uncertain information in bow-tie analysis. J. Loss Prevent. Process Industries—J LOSS PREVENT PROC IND. 25 (2012)

    Google Scholar 

  5. R. Ferdous, F. Khan, R. Sadiq, P. Amyotte, B. Veitch, Fault and event tree analyses for process systems risk analysis: uncertainty handling formulations. Risk Anal. 31(1), 86–107 (2011)

    Article  Google Scholar 

  6. R. Ferdous, F. Khan, R. Sadiq, P. Amyotte, B. Veitch, Fault and event tree analyses for process systems risk analysis: uncertainty handling formulations. Risk Anal.: Int. J. 31(1), 86–107 (2011)

    Article  Google Scholar 

  7. R. Ferdous, F. Khan, R. Sadiq, P. Amyotte, B. Veitch, Handling data uncertainties in event tree analysis. Process Saf. Environ. Prot. 87(5), 283–292 (2009)

    Article  Google Scholar 

  8. A.S. Markowski, M.S. Mannan, A. Kotynia, D. Siuta, Uncertainty aspects in process safety analysis. J. Loss Prev. Process Ind. 23(3), 446–454 (2010)

    Article  Google Scholar 

  9. A.S. Markowski, M.S. Mannan, Fuzzy risk matrix. J. Hazard. Mater. 159(1), 152–157 (2008)

    Article  Google Scholar 

  10. F.I. Khan, S. Abbasi, Risk analysis of a typical chemical industry using ORA procedure. J. Loss Prev. Process Ind. 14(1), 43–59 (2001)

    Article  Google Scholar 

  11. E. Zarei, M.J. Jafari, N. Badri, Risk assessment of vapor cloud explosions in a hydrogen production facility with consequence modeling. J. Res. Health Sci. 13(2), 181–187 (2013)

    Google Scholar 

  12. AIChE. Guidelines for chemical process quantitative risk analysis: center for Chemical Process Safety of the American Institute of Chemical (2000)

    Google Scholar 

  13. A. Dormohammadi, E. Zarei, M.B. Delkhosh, A. Gholami, Risk analysis by means of a QRA approach on a LPG cylinder filling installation. Process Saf. Prog. 33(1), 77–84 (2014)

    Article  Google Scholar 

  14. D. Siuta, A.S. Markowski, M.S. Mannan, Uncertainty techniques in liquefied natural gas (LNG) dispersion calculations. J. Loss Prev. Process Ind. 26(3), 418–426 (2013)

    Article  Google Scholar 

  15. A.S. Markowski, M.S. Mannan, A. Bigoszewska, Fuzzy logic for process safety analysis. J. Loss Prev. Process Ind. 22(6), 695–702 (2009)

    Article  Google Scholar 

  16. M. Yazdi, S. Kabir, M. Walker, Uncertainty handling in fault tree based risk assessment. State of the art and future perspectives.Process Saf. Environ. Prot. 131, (2019). https://doi.org/10.1016/j.psep.2019.09.003

  17. M. Yazdi, N.A. Golilarz, K.A. Adesina, A. Nedjati, Probabilistic Risk Analysis of Process Systems Considering Epistemic and Aleatory Uncertainties. A Comparison Study. Int. J. Uncertainty, Fuzziness Knowledge-Based Syst. 29, 181–207 (2021). https://doi.org/10.1142/S0218488521500098

  18. J. Spouge, A guide to quantitative risk assessment for offshore installations: CMPT Aberdeen (1999)

    Google Scholar 

  19. A.S. Markowski, A. Kotynia, “Bow-tie” model in layer of protection analysis. Process Saf. Environ. Prot. 89(4), 205–213 (2011)

    Article  Google Scholar 

  20. A. de Ruijter, F. Guldenmund, The bowtie method: a review. Saf. Sci. 88, 211–218 (2016)

    Article  Google Scholar 

  21. E. Zarei, N. Khakzad, V. Cozzani, G. Reniers, Safety analysis of process systems using Fuzzy Bayesian Network (FBN). J. Loss Prev. Process Ind. 57, 7–16 (2019)

    Article  Google Scholar 

  22. E. Zarei, A. Azadeh, N. Khakzad, M.M. Aliabadi, I. Mohammadfam, Dynamic safety assessment of natural gas stations using Bayesian network. J. Hazard. Mater. 321, 830–840 (2017)

    Article  Google Scholar 

  23. E. Zarei, M. Yazdi, R. Abbassi, F. Khan, A hybrid model for human factor analysis in process accidents: FBN-HFACS. J. Loss Prev. Process Ind. 57, 142–155 (2019)

    Article  Google Scholar 

  24. A. Rostamabadi, M. Jahangiri, E. Zarei, M. Kamalinia, M. Alimohammadlou, A novel Fuzzy Bayesian Network approach for safety analysis of process systems; an application of HFACS and SHIPP methodology. J. Clean. Prod. 244, 118761 (2020)

    Google Scholar 

  25. D.T.S. Alves, G.B.A. Lima, Establishing an onshore pipeline incident database to support operational risk management in Brazil - Part 2: Bowtie proposition and statistics of failure. Process Saf. Environ. Prot. 155, 80–97 (2021)

    Article  Google Scholar 

  26. F. Delmotte, A sociotechnical framework for the integration of human and organizational factors in project management and risk analysis. Virginia Tech (2003)

    Google Scholar 

  27. K. Van Scyoc, G. Hughes, Rail ruminations for process safety improvement. J. Loss Prev. Process Ind. 22(6), 689–694 (2009)

    Article  Google Scholar 

  28. J. Aust, D. Pons, A systematic methodology for developing bowtie in risk assessment: application to borescope inspection. Aerospace 7(7), 86 (2020)

    Article  Google Scholar 

  29. R. Burgess-Limerick, T. Horberry, L. Steiner, Bow-tie analysis of a fatal underground coal mine collision. Ergonomics Australia. 10(2) (2014)

    Google Scholar 

  30. I. Papazoglou, L. Bellamy, A. Hale, O. Aneziris, B. Ale, J. Post et al., I-Risk: development of an integrated technical and management risk methodology for chemical installations. J. Loss Prev. Process Ind. 16(6), 575–591 (2003)

    Article  Google Scholar 

  31. V. De Dianous, C. Fievez, ARAMIS project: a more explicit demonstration of risk control through the use of bow–tie diagrams and the evaluation of safety barrier performance. J. Hazard. Mater. 130(3), 220–233 (2006)

    Article  Google Scholar 

  32. H. Abdo, M. Kaouk, J.-M. Flaus, F. Masse, A safety/security risk analysis approach of industrial control systems: a cyber bowtie–combining new version of attack tree with bowtie analysis. Comput. Secur. 72, 175–195 (2018)

    Article  Google Scholar 

  33. K. Bernsmed, C. Frøystad, P. H. Meland, D. A. Nesheim, Ø.J. Rødseth (eds). Visualizing cyber security risks with bow-tie diagrams. International Workshop on Graphical Models for Security (Springer, 2017)

    Google Scholar 

  34. A. Faulkner, M. Nicholson, Data-Centric Safety: Challenges, Approaches, and Incident Investigation (Elsevier, 2020)

    Google Scholar 

  35. M. Culwick, A. Merry, D. Clarke, K. Taraporewalla, N. Gibbs, Bow-tie diagrams for risk management in anaesthesia. Anaesth. Intensive Care 44(6), 712–718 (2016)

    Article  Google Scholar 

  36. Z. Abdi, H. Ravaghi, M. Abbasi, B. Delgoshaei, S. Esfandiari, Application of Bow-tie methodology to improve patient safety. Int J. Health Care Qual. Assur. (2016)

    Google Scholar 

  37. M.C. Kerckhoffs, A.F. van der Sluijs, J.M. Binnekade, D.A. Dongelmans, Improving patient safety in the ICU by prospective identification of missing safety barriers using the bow-tie prospective risk analysis model. J. Patient Saf. 9(3), 154–159 (2013)

    Article  Google Scholar 

  38. H. Elamir, Enterprise risk management and bow ties: going beyond patient safety. Bus. Process Manage. J. (2019)

    Google Scholar 

  39. M. Yazdi, Introducing a heuristic approach to enhance the reliability of system safety assessment. Qual. Reliab. Eng. Int. 35, (2019). https://doi.org/10.1002/qre.2545

  40. S. Kabir, M. Yazdi, J.I. Aizpurua, Y. Papadopoulos, Uncertainty-Aware Dynamic Reliability Analysis Framework for Complex Systems. IEEE Access 6, (2018). https://doi.org/10.1109/ACCESS.2018.2843166

  41. A. S. Markowski, D. Siuta, Application of fuzzy logic approach to consequence modeling in process industries. Chem. Eng. Trans. (2013)

    Google Scholar 

  42. Ayyub BM, Klir GJ. Uncertainty modeling and analysis in engineering and the sciences: Chapman and Hall/CRC; 2006.

    Google Scholar 

  43. X. Guo, J. Ji, F. Khan, L. Ding, Q. Tong, A novel fuzzy dynamic Bayesian network for dynamic risk assessment and uncertainty propagation quantification in uncertainty environment. Safety Sci. 141, 105285 (2021)

    Article  Google Scholar 

  44. N.K. Jyotish, L.K. Singh, C. Kumar, A state-of-the-art review on performance measurement petri net models for safety critical systems of NPP. Ann. Nuclear Energy 165, 108635 (2022)

    Article  Google Scholar 

  45. R. Squillante Jr., J.C. Dias, L.A. Moscato, F. Junqueira, P.E. Miyagi, D.J.D. Santos Filho, A framework for synthesis of safety-related control design to avoid critical faults and pathogenic accidents in the process industries. Safety Sci. 139, 105168 (2021)

    Article  Google Scholar 

  46. L. Zhang, X. Wu, Y. Qin, M.J. Skibniewski, W. Liu, Towards a fuzzy Bayesian network based approach for safety risk analysis of tunnel-induced pipeline damage. Risk Anal. 36(2), 278–301 (2016)

    Article  Google Scholar 

  47. A.O. Babaleye, R.E. Kurt, F. Khan, Safety analysis of plugging and abandonment of oil and gas wells in uncertain conditions with limited data. Reliab. Eng. Syst. Saf. 188, 133–141 (2019)

    Article  Google Scholar 

  48. M. Pouyakian, M.J. Jafari, F. Laal, F. Nourai, E. Zarei, A comprehensive approach to analyze the risk of floating roof storage tanks. Process Saf. Environ. Prot. 146, 811–836 (2021)

    Article  Google Scholar 

  49. E. Zarei, A. Karimi, E. Habibi, A. Barkhordari, G. Reniers, Dynamic occupational accidents modeling using dynamic hybrid Bayesian confirmatory factor analysis: An in-depth psychometrics study. Safety Sci. 136, 105146 (2021)

    Article  Google Scholar 

  50. J. Yao, J. Li, H. Li, X. Wang, (eds). Modeling system based on fuzzy dynamic Bayesian network for fault diagnosis and reliability prediction. 2015 Annual Reliability and Maintainability Symposium (RAMS), IEEE (2015)

    Google Scholar 

  51. K. Chen, X. Wei, H. Li, H. Lin, F. Khan, Operational risk analysis of blowout scenario in offshore drilling operation. Process Saf. Environ. Prot. 149, 422–431 (2021)

    Article  Google Scholar 

  52. F. Abad, L.M. Naeni, A hybrid framework to assess the risk of change in construction projects using fuzzy fault tree and fuzzy event tree analysis. Int. J. Construct. Manage., 1–13 (2020)

    Google Scholar 

  53. S.M. Lavasani, N. Ramzali, F. Sabzalipour, E. Akyuz, Utilisation of fuzzy fault tree analysis (FFTA) for quantified risk analysis of leakage in abandoned oil and natural-gas wells. Ocean Eng. 108, 729–737 (2015)

    Article  Google Scholar 

  54. L. Shi, J. Shuai, K. Xu, Fuzzy fault tree assessment based on improved AHP for fire and explosion accidents for steel oil storage tanks. J. Hazard. Mater. 278, 529–538 (2014)

    Article  Google Scholar 

  55. J. Wang, R. Nie, H.Y. Zhang, X.H. Chen, New operators on triangular intuitionistic fuzzy numbers and their applications in system fault analysis. Inf. Sci. 251, 79–95 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  56. H. Wang, X. Lu, Y. Du, C. Zhang, R. Sadiq, Y. Deng, Fault tree analysis based on TOPSIS and triangular fuzzy number. Int. J. Syst. Assur. Eng. Manage. 8(4), 2064–2070 (2017)

    Article  Google Scholar 

  57. D. Wang, Y. Zhang, X. Jia, P. Jiang, B. Guo, Handling uncertainties in fault tree analysis by a hybrid probabilistic–possibilistic framework. Qual. Reliab. Eng. Int. 32(3), 1137–1148 (2016)

    Article  Google Scholar 

  58. D. Wang, P. Zhang, L. Chen, Fuzzy fault tree analysis for fire and explosion of crude oil tanks. J. Loss Prev. Process Ind. 26(6), 1390–1398 (2013)

    Article  Google Scholar 

  59. S. Kabir, M. Walker, Y. Papadopoulos, E. Rüde, P. Securius, Fuzzy temporal fault tree analysis of dynamic systems. Int. J. Approximate Reason. 77, 20–37 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  60. F. Aqlan, E.M. Ali, Integrating lean principles and fuzzy bow-tie analysis for risk assessment in chemical industry. J. Loss Prev. Process Ind. 29, 39–48 (2014)

    Article  Google Scholar 

  61. E. Stemn, C. Bofinger, D. Cliff, M.E. Hassall, Failure to learn from safety incidents: status, challenges and opportunities. Saf. Sci. 101, 313–325 (2018)

    Article  Google Scholar 

  62. J.A. Suardin, A. Jeff McPhate, A. Sipkema, M. Childs, M.S. Mannan, Fire and explosion assessment on oil and gas floating production storage offloading (FPSO): an effective screening and comparison tool. Process Saf. Environ. Prot. 87(3), 147–160 (2009)

    Article  Google Scholar 

  63. S. Hassan, J. Wang, C. Kontovas, M. Bashir, Modified FMEA hazard identification for cross-country petroleum pipeline using Fuzzy Rule Base and approximate reasoning. J. Loss Prevent. Process Industries. 74, 104616 (2022)

    Article  Google Scholar 

  64. M. Cheraghi, A.E. Baladeh, N. Khakzad, A fuzzy multi-attribute HAZOP technique (FMA-HAZOP): application to gas wellhead facilities. Saf. Sci. 114, 12–22 (2019)

    Article  Google Scholar 

  65. R.C. Wilcox, B. M. Ayyub, (eds), Uncertainty modeling of data and uncertainty propagation for risk studies. Uncertainty Modeling and Analysis, International Symposium on 2003, IEEE Computer Society

    Google Scholar 

  66. M. Abrahamsson, Uncertainty in Quantitative Risk Analysis-Characterisation and Methods osf Treatment, Lund University (2002)

    Google Scholar 

  67. K. Park, G. Lee, C. Kim, J. Kim, K. Rhie, W.B. Lee, Comprehensive framework for underground pipeline management with reliability and cost factors using Monte Carlo simulation. J. Loss Prevent. Process Industries. 63, 104035 (2020)

    Article  Google Scholar 

  68. S. Alessandri, A.C. Caputo, D. Corritore, R. Giannini, F. Paolacci, H.N. Phan, Probabilistic risk analysis of process plants under seismic loading based on Monte Carlo simulations. J. Loss Prev. Process Ind. 53, 136–148 (2018)

    Article  Google Scholar 

  69. R.T. Clemen, R.L. Winkler, Combining probability distributions from experts in risk analysis. Risk Anal. 19(2), 187–203 (1999)

    Article  Google Scholar 

  70. T. Rosqvist, On the Use of Expert Judgement in the Qualification of Risk Assessment, VTT Technical Research Centre of Finland (2003)

    Google Scholar 

  71. E. Zarei, B. Ramavandi, A.H. Darabi, M. Omidvar, A framework for resilience assessment in process systems using a fuzzy hybrid MCDM model. J. Loss Prevent. Process Industries 69, 104375 (2021)

    Article  Google Scholar 

  72. B. Ramavandi, A. H. Darabi, M. Omidvar, Risk assessment of hot and humid environments through an integrated fuzzy AHP-VIKOR method. Stochastic Environ. Res. Risk Assessment, 1–14 (2021)

    Google Scholar 

  73. B. Skelton, Process safety analysis: an introduction: IChemE (1997)

    Google Scholar 

  74. D. A. Crowl, J. F. Louvar, Chemical process safety: fundamentals with applications, Pearson Education (2001)

    Google Scholar 

  75. R. Ferdous, F. Khan, B. Veitch, P.R. Amyotte, Methodology for computer aided fuzzy fault tree analysis. Process Saf. Environ. Prot. 87(4), 217–226 (2009)

    Article  Google Scholar 

  76. K. Sentz, S. Ferson, Combination of evidence in Dempster-Shafer theory: Sandia National Laboratories Albuquerque (2002)

    Google Scholar 

  77. R. Ouache, R. Ruparathna, R. Sadiq, K. Hewage, Fire risk assessment model for residential buildings using bow-tie method. The University of British Columbia (2018)

    Google Scholar 

  78. D. Yuhua, Y. Datao, Estimation of failure probability of oil and gas transmission pipelines by fuzzy fault tree analysis. J. Loss Prev. Process Ind. 18(2), 83–88 (2005)

    Article  Google Scholar 

  79. H. Tanaka, L. Fan, F. Lai, K. Toguchi, Fault-tree analysis by fuzzy probability. IEEE Trans. Reliab. 32(5), 453–457 (1983)

    Article  MATH  Google Scholar 

  80. K.B. Misra, G.G. Weber, Use of fuzzy set theory for level-I studies in probabilistic risk assessment. Fuzzy Sets Syst. 37(2), 139–160 (1990)

    Article  MathSciNet  Google Scholar 

  81. D. Singer, A fuzzy set approach to fault tree and reliability analysis. Fuzzy Sets Syst. 34(2), 145–155 (1990)

    Article  Google Scholar 

  82. R. Kenarangui, Event-tree analysis by fuzzy probability. IEEE Trans. Reliab. 40(1), 120–124 (1991)

    Article  MATH  Google Scholar 

  83. J.P. Sawyer, S. Rao, Fault tree analysis of fuzzy mechanical systems. Microelectron. Reliab. 34(4), 653–667 (1994)

    Article  Google Scholar 

  84. P.V. Suresh, A.K. Babar, V.V. Raj, Uncertainty in fault tree analysis: A fuzzy approach. Fuzzy Sets Syst. 83(2), 135–141 (1996)

    Article  Google Scholar 

  85. S. Rivera, J. H. Baron, Using fuzzy arithmetic in containment event trees (2000)

    Google Scholar 

  86. E. Clifton (ed), Fault tree analysis-a history. Proceedings of the 17th International Systems Safety Conference (1999)

    Google Scholar 

  87. U. Hauptmanns, Fault tree analysis of a proposed ethylene vaporization unit. Ind. Eng. Chem. Fundam. 19(3), 300–309 (1980)

    Article  Google Scholar 

  88. U. Hauptmanns, Fault tree analysis for process plants (CRC Press, Engineering risk and hazard assessment, 2018), pp. 21–60

    Google Scholar 

  89. K. Hiromitsu, J. H. Ernest, Fault tree construction. probabilistic risk assessment and management for engineers and scientists, IEEE, pp 165–226 (1996)

    Google Scholar 

  90. D. Huang, T. Chen, M.J.J. Wang, A fuzzy set approach for event tree analysis. Fuzzy Sets Syst. 118(1), 153–165 (2001)

    Article  MathSciNet  Google Scholar 

  91. C.T. Lin, M.J.J. Wang, Hybrid fault tree analysis using fuzzy sets. Reliab. Eng. Syst. Safety 58(3), 205–213 (1997)

    Article  Google Scholar 

  92. S. Kabir, Y. Papadopoulos, A review of applications of fuzzy sets to safety and reliability engineering. Int. J. Approximate Reasoning 100, 29–55 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  93. H. Furuta, N. Shiraishi, Fuzzy importance in fault tree analysis. Fuzzy Sets Syst. 12(3), 205–213 (1984)

    Article  MATH  Google Scholar 

  94. A.C.F. Guimarẽes, N.F.F. Ebecken, FuzzyFTA: a fuzzy fault tree system for uncertainty analysis. Ann. Nucl. Energy 26(6), 523–532 (1999)

    Article  Google Scholar 

  95. S.M. Lavasani, A. Zendegani, M. Celik, An extension to Fuzzy Fault Tree Analysis (FFTA) application in petrochemical process industry. Process Saf. Environ. Prot. 93, 75–88 (2015)

    Article  Google Scholar 

  96. J.H. Purba, D.T. Sony Tjahyani, A.S. Ekariansyah, H. Tjahjono, Fuzzy probability based fault tree analysis to propagate and quantify epistemic uncertainty. Ann. Nucl. Energy 85, 1189–1199 (2015)

    Article  Google Scholar 

  97. J.H. Purba, A fuzzy-based reliability approach to evaluate basic events of fault tree analysis for nuclear power plant probabilistic safety assessment. Ann. Nuclear Energy 70(3), 21–29 (2014)

    Article  Google Scholar 

  98. M. Abdelgawad, A.R. Fayek, Fuzzy reliability analyzer: quantitative assessment of risk events in the construction industry using fuzzy fault-tree analysis. J. Constr. Eng. Manag. 137(4), 294–302 (2011)

    Article  Google Scholar 

  99. A. Cheliyan, S. Bhattacharyya, Fuzzy fault tree analysis of oil and gas leakage in subsea production systems. J. Ocean Eng. Sci. 3(1), 38–48 (2018)

    Article  Google Scholar 

  100. Y.A. Mahmood, A. Ahmadi, A.K. Verma, A. Srividya, U. Kumar, Fuzzy fault tree analysis: a review of concept and application. Int. J. Syst. Assurance Eng. Manage. 4(1), 19–32 (2013)

    Article  Google Scholar 

  101. A. Ardeshir, M. Amiri, Y. Ghasemi, M. Errington, Risk assessment of construction projects for water conveyance tunnels using fuzzy fault tree analysis. Int. J. Civil Eng. 12(4), 396–412 (2014)

    Google Scholar 

  102. X. Bian, C. Mou, Z. Yan, J. Xu (eds) Reliability analysis of AUV based on fuzzy fault tree. 2009 International conference on mechatronics and automation, IEEE, (2009)

    Google Scholar 

  103. Z. Chen, X. Wu, J. Qin, Risk assessment of an oxygen-enhanced combustor using a structural model based on the FMEA and fuzzy fault tree. J. Loss Prev. Process Ind. 32, 349–357 (2014)

    Article  Google Scholar 

  104. R. Flage, P. Baraldi, E. Zio, T. Aven, Probability and possibility-based representations of uncertainty in fault tree analysis. Risk Anal.: Int. J. 33(1), 121–133 (2013)

    Article  Google Scholar 

  105. M. Gierczak, The quantitative risk assessment of MINI, MIDI and MAXI horizontal directional drilling projects applying fuzzy fault tree analysis. Tunn. Undergr. Space Technol. 43, 67–77 (2014)

    Article  Google Scholar 

  106. K. B. Kim, H. J. Shim, M. S. Jae, Fuzzy Uncertainty Evaluation for Fault Tree Analysis (2015)

    Google Scholar 

  107. P.K.S. Singh, Fuzzy fault tree analysis using level (λ, ρ) interval-valued fuzzy numbers. Industrial Eng. Lett., 5(2) (2015)

    Google Scholar 

  108. A. Mhalla, S. Collart Dutilleul, E. Craye, M. Benrejeb, Estimation of failure probability of milk manufacturing unit by fuzzy fault tree analysis. J. Intell. Fuzzy Syst. 26(2), 741–750 (2014)

    Article  MATH  Google Scholar 

  109. S. Rajakarunakaran, A.M. Kumar, V.A. Prabhu, Applications of fuzzy faulty tree analysis and expert elicitation for evaluation of risks in LPG refuelling station. J. Loss Prev. Process Ind. 33, 109–123 (2015)

    Article  Google Scholar 

  110. Y.E. Senol, B. Sahin, A novel real-time continuous fuzzy fault tree analysis (RC-FFTA) model for dynamic environment. Ocean Eng. 127, 70–81 (2016)

    Article  Google Scholar 

  111. M. Yazdi, E. Zarei, Uncertainty handling in the safety risk analysis: an integrated approach based on fuzzy fault tree analysis. J. Fail. Anal. Prev. 18(2), 392–404 (2018)

    Article  Google Scholar 

  112. Z.-J. Zhang, Z.-J. Wang, B.-H. Zhang (eds), Studies on median value of fuzzy numbers based on confidence level. 2008 International Conference on Machine Learning and Cybernetics, IEEE (2008)

    Google Scholar 

  113. S.A. Zonouz, S. G. Miremadi (eds), A fuzzy-Monte Carlo simulation approach for fault tree analysis. RAMS'06 Annual reliability and maintainability symposium, 2006, IEEE (2006)

    Google Scholar 

  114. H. Abdo, J.-M. Flaus, Monte Carlo simulation to solve fuzzy dynamic fault tree. IFAC-PapersOnLine. 49(12), 1886–1891 (2016)

    Article  Google Scholar 

  115. R. Duan, J. Fan, Reliability evaluation of data communication system based on dynamic fault tree under epistemic uncertainty. Math. Problems Eng., 2014 (2014)

    Google Scholar 

  116. R. Duan, H. Zhou, Diagnosis strategy for micro-computer controlled straight electro-pneumatic braking system using fuzzy set and dynamic fault tree. Eksploatacja i Niezawodność, 16(2) (2014)

    Google Scholar 

  117. H. Huang, Y. Li, J. Sun, Y. Yang, N. Xiao, Fuzzy dynamic fault tree analysis for the solar array drive assembly. J. Mech. Eng. 49(19), 70–76 (2013)

    Article  Google Scholar 

  118. S. Kabir, E. Edifor, M. Walker, N. Gordon (eds), Quantification of temporal fault trees based on fuzzy set theory. Proceedings of the Ninth International Conference on Dependability and Complex Systems DepCoS-RELCOMEX June 30–July 4, 2014, (Springer, Brunów, Poland, 2014)

    Google Scholar 

  119. J. Tu, R. Cheng, Q. Tao, Reliability analysis method of safety-critical avionics system based on dynamic fault tree under fuzzy uncertainty. Eksploatacja i Niezawodność., 17(1) (2015)

    Google Scholar 

  120. C. Yuyan, L. Ting, W. Jian, X. Rong, W. Xinmin, Fuzzy dynamic fault tree analysis for electro-mechanical actuator based on algebraic model with common-cause failures. Autom. Control. Comput. Sci. 50(2), 80–90 (2016)

    Article  Google Scholar 

  121. J.D. Andrews, S.J. Dunnett, Event-tree analysis using binary decision diagrams. IEEE Trans. Reliab. 49(2), 230–238 (2000)

    Article  Google Scholar 

  122. O. Nývlt, M. Rausand, Dependencies in event trees analyzed by Petri nets. Reliab. Eng. Syst. Saf. 104, 45–57 (2012)

    Article  Google Scholar 

  123. F. Lees, Lees' Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control (Butterworth-Heinemann, 2012)

    Google Scholar 

  124. S. Mannan, Hazard assessment, in Lees’ Loss Prevention in the Process Industries, 4th edn., ed. by S. Mannan (Butterworth-Heinemann, Oxford, 2012), pp. 284–404

    Google Scholar 

  125. R. Sadiq, E. Saint-Martin, Y. Kleiner, Predicting risk of water quality failures in distribution networks under uncertainties using fault-tree analysis. Urban Water J. 5(4), 287-304 (2008)

    Google Scholar 

  126. S. Ferson, J. Hajagos, D. Berleant, J. Zhang, W.T. Tucker, L. Ginzburg et al., Dependence in Dempster-Shafer theory and probability bounds analysis. Sandia Nat. Lab. (2004)

    Google Scholar 

  127. N.J. Duijm, Safety-barrier diagrams as a safety management tool. Reliab. Eng. Syst. Saf. 94(2), 332–341 (2009)

    Article  Google Scholar 

  128. Gareth (ed), Lessons learned from real world application of the bow-tie method. SPE Middle East Health, Safety, Security, and Environment Conference and Exhibition, OnePetro (2012)

    Google Scholar 

  129. W.E. Vesely, F. F. Goldberg, N.H. Roberts, D. F. Haasl, Fault tree handbook. (Nuclear Regulatory Commission Washington DC, 1981)

    Google Scholar 

  130. F.-R. Chevreau, J.-L. Wybo, D. Cauchois, Organizing learning processes on risks by using the bow-tie representation. J. Hazard. Mater. 130(3), 276–283 (2006)

    Article  Google Scholar 

  131. C. Delvosalle, C. Fievez, A. Pipart, B. Debray, ARAMIS project: A comprehensive methodology for the identification of reference accident scenarios in process industries. J. Hazard. Mater. 130(3), 200–219 (2006)

    Article  Google Scholar 

  132. J. Wilday, N. Paltrinieri, R. Farret, J. Hebrard, L. Breedveld, Addressing emerging risks using carbon capture and storage as an example. Process Saf. Environ. Prot. 89(6), 463–471 (2011)

    Article  Google Scholar 

  133. A. Tugnoli, Z. Gyenes, L. Van Wijk, M. Christou, G. Spadoni, V. Cozzani, Reference criteria for the identification of accident scenarios in the framework of land use planning. J. Loss Prev. Process Ind. 26(4), 614–627 (2013)

    Article  Google Scholar 

  134. T. Deacon, P. Amyotte, F. Khan, S. MacKinnon, A framework for human error analysis of offshore evacuations. Saf. Sci. 51(1), 319–327 (2013)

    Article  Google Scholar 

  135. S. Rathnayaka, F. Khan, P. Amyotte, Risk-based process plant design considering inherent safety. Saf. Sci. 70, 438–464 (2014)

    Article  Google Scholar 

  136. L. Lu, W. Liang, L. Zhang, H. Zhang, Z. Lu, J. Shan, A comprehensive risk evaluation method for natural gas pipelines by combining a risk matrix with a bow-tie model. J. Natural Gas Sci. Eng. 25, 124–133 (2015)

    Article  Google Scholar 

  137. D. Siuta, A. Kotynia, B. Kukfisz, W. Szaferski (eds), Risk assessment in process industries using fuzzy logic approach. Seminar on Practical Aspects of Chemical Engineering (Springer, Cham, 2019)

    Google Scholar 

  138. M. Abimbola, F. Khan, N. Khakzad, Dynamic safety risk analysis of offshore drilling. J. Loss Prev. Process Ind. 30, 74–85 (2014)

    Article  Google Scholar 

  139. A. Badreddine, T.B. Romdhane, M.A.B. HajKacem, N.B. Amor, A new multi-objectives approach to implement preventive and protective barriers in bow tie diagram. J. Loss Prev. Process Ind. 32, 238–253 (2014)

    Article  Google Scholar 

  140. A. Badreddine, N.B. Amor, A Bayesian approach to construct bow tie diagrams for risk evaluation. Process Saf. Environ. Prot. 91(3), 159–171 (2013)

    Article  Google Scholar 

  141. A. Badreddine, N. B. Amor (eds), A new approach to construct optimal bow tie diagrams for risk analysis. International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (Springer, 2010)

    Google Scholar 

  142. C. Delvosalle, C. Fiévez, A. Pipart, J.C. Fabrega, E. Planas, M. Christou et al., Identification of reference accident scenarios in SEVESO establishments. Reliab. Eng. Syst. Saf. 90(2–3), 238–246 (2005)

    Article  Google Scholar 

  143. A. Franks, R. Whitehead, P. Crosthwaite, L. Smail, Application of QRA in operational safety issues, HSE Books (2002)

    Google Scholar 

  144. IADC, Health Safety and Environment Case Guidelines for Mobile Offshore Drilling Units. (Houston, International Association of Drilling Contractors, 2010)

    Google Scholar 

  145. N. Khakzad, F. Khan, P. Amyotte, Dynamic safety analysis of process systems by mapping bow-tie into Bayesian network. Process Saf. Environ. Prot. 91(1–2), 46–53 (2013)

    Article  Google Scholar 

  146. N. Khakzad, F. Khan, P. Amyotte, Dynamic risk analysis using bow-tie approach. Reliab. Eng. Syst. Saf. 104, 36–44 (2012)

    Article  Google Scholar 

  147. N. Khakzad, F. Khan, P. Amyotte, Quantitative risk analysis of offshore drilling operations: a Bayesian approach. Saf. Sci. 57, 108–117 (2013)

    Article  Google Scholar 

  148. N. Paltrinieri, F. Khan, Dynamic risk analysis in the chemical and petroleum industry: evolution and interaction with parallel disciplines in the perspective of industrial application, (Butterworth-Heinemann, 2016)

    Google Scholar 

  149. A. Targoutzidis, Incorporating human factors into a simplified “bow-tie” approach for workplace risk assessment. Saf. Sci. 48(2), 145–156 (2010)

    Article  Google Scholar 

  150. K. Mokhtari, J. Ren, C. Roberts, J. Wang, Application of a generic bow-tie based risk analysis framework on risk management of sea ports and offshore terminals. J. Hazard. Mater. 192(2), 465–475 (2011)

    Article  Google Scholar 

  151. E. Zarei, F. Khan, M. Yazdi, A dynamic risk model to analyze hydrogen infrastructure. Int. J. Hydrogen Energy 46(5), 4626–4643 (2021)

    Article  Google Scholar 

  152. L.A. Zadeh, Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  153. L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  154. L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-III. Inf. Sci. 9(1), 43–80 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  155. L.A. Zadeh, Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90(2), 111–127 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  156. M.S. Anggreainy, M.R. Widyanto, B.H. Widjaja, N. Soedarsono, Gaussian fuzzy number for STR-DNA similarity calculation involving familial and tribal relationships. Adv. Bioinform. 2018, 8602513 (2018)

    Google Scholar 

  157. L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning—II. Inf. Sci. 8(4), 301–357 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  158. G. Zheng, N. Zhu, Z. Tian, Y. Chen, B. Sun, Application of a trapezoidal fuzzy AHP method for work safety evaluation and early warning rating of hot and humid environments. Saf. Sci. 50(2), 228–239 (2012)

    Article  Google Scholar 

  159. L.A. Zadeh, A Computational Approach to Fuzzy Quantifiers in Natural Languages (Elsevier, Computational linguistics, 1983), pp. 149–184

    MATH  Google Scholar 

  160. W. Karwowski, A. Mital, Potential applications of fuzzy sets in industrial safety engineering. Fuzzy Sets Syst. 19(2), 105–120 (1986)

    Article  Google Scholar 

  161. J.B. Bowles, C.E. Pelaez, Application of fuzzy logic to reliability engineering. Proc. IEEE 83(3), 435–449 (1995)

    Article  Google Scholar 

  162. D.J. Dubois, Fuzzy sets and systems: theory and applications, (Academic press, 1980)

    Google Scholar 

  163. D. Dubois, Possibility theory and statistical reasoning. Comput. Stat. Data Anal. 51(1), 47–69 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  164. M. Zahabi, D. Kaber, A fuzzy system hazard analysis approach for human-in-the-loop systems. Saf. Sci. 120, 922–931 (2019)

    Article  Google Scholar 

  165. S. Kambalimath, P.C. Deka, A basic review of fuzzy logic applications in hydrology and water resources. Appl. Water Sci. 10(8), 191 (2020)

    Article  Google Scholar 

  166. E.H. Mamdani, S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)

    Article  MATH  Google Scholar 

  167. P.M. Larsen, Industrial applications of fuzzy logic control. Int. J. Man Mach. Stud. 12(1), 3–10 (1980)

    Article  Google Scholar 

  168. T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1, 116–132 (1985)

    Article  MATH  Google Scholar 

  169. H.T. Liu, Y.I. Tsai, A fuzzy risk assessment approach for occupational hazards in the construction industry. Safety Sci. 50(4), 1067–1078 (2012)

    Article  Google Scholar 

  170. B. Ruge (ed), Risk matrix as tool for risk assessment in the chemical process industries. Probabilistic Safety Assessment and Management, (Springer, 2004)

    Google Scholar 

  171. M. Detyniecki, D. B. Bouchon-meunier, D. R. Yager, R. H. Prade, Mathematical aggregation operators and their application to video querying (2000)

    Google Scholar 

  172. R.R. Yager, On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  173. T. Tsabadze, A method for fuzzy aggregation based on group expert evaluations. Fuzzy Sets Syst. 157(10), 1346–1361 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  174. B. Schweizer, A. Sklar. Probabilistic metric spaces. Courier Corporation (2011)

    Google Scholar 

  175. M. Sugeno, Theory of fuzzy integrals and its applications. Doct Thesis, Tokyo Institute of technology (1974)

    Google Scholar 

  176. W. Silvert, Symmetric summation: a class of operations on fuzzy sets. Readings in Fuzzy Sets for Intelligent Systems. (Elsevier, 1993), pp. 77–9

    Google Scholar 

  177. H.-S. Lee, Optimal consensus of fuzzy opinions under group decision making environment. Fuzzy Sets Syst. 132(3), 303–315 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  178. R. R. Yager, A new methodology for ordinal multiobjective decisions based on fuzzy sets. Readings in Fuzzy Sets for Intelligent Systems. (Elsevier, 1993), pp 751–6

    Google Scholar 

  179. C. Lu, J. Lan, Z. Wang, Aggregation of fuzzy opinions under group decision-making based on similarity and distance. J. Syst. Sci. Complexity 19(1), 63–71 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  180. C. Kim, Y. Ju, M. Gens, Multilevel fault tree analysis using fuzzy numbers. Comput. Oper. Res. 23(7), 695–703 (1996)

    Article  MATH  Google Scholar 

  181. L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1(1), 3–28 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  182. H. Langseth, L. Portinale, Bayesian networks in reliability. Reliab. Eng. Syst. Saf. 92(1), 92–108 (2007)

    Article  Google Scholar 

  183. V. Renjith, G. Madhu, V.L.G. Nayagam, A. Bhasi, Two-dimensional fuzzy fault tree analysis for chlorine release from a chlor-alkali industry using expert elicitation. J. Hazard. Mater. 183(1–3), 103–110 (2010)

    Article  Google Scholar 

  184. T. Onisawa, An approach to human reliability in man-machine systems using error possibility. Fuzzy Sets Syst. 27(2), 87–103 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  185. T. J. Ross, Properties of membership functions, fuzzification, and defuzzification. Fuzzy Logic Eng. Appl., 89–116 (2010)

    Google Scholar 

  186. M. Omidvar, A. Mazloumi, I. Mohammad Fam, F. Nirumand, Development of a framework for resilience measurement: suggestion of fuzzy Resilience Grade (RG) and fuzzy Resilience Early Warning Grade (REWG). Work 56(3), 463–474 (2017)

    Article  Google Scholar 

  187. CCPS, Layer of Protection Analysis: Simplified Process Risk Assessment (2011)

    Google Scholar 

  188. A. Nassaj, J. Barabady (eds). Fault tree analysis of oil and gas distillation tower and application of Bayesian Networks. 2016 IEEE international conference on industrial engineering and engineering management (IEEM), IEEE (2016)

    Google Scholar 

  189. J.A. Vílchez, V. Espejo, J. Casal, Generic event trees and probabilities for the release of different types of hazardous materials. J. Loss Prev. Process Ind. 24(3), 281–287 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Omidvar, M., Zarei, E., Ramavandi, B., Yazdi, M. (2022). Fuzzy Bow-Tie Analysis: Concepts, Review, and Application. In: Yazdi, M. (eds) Linguistic Methods Under Fuzzy Information in System Safety and Reliability Analysis. Studies in Fuzziness and Soft Computing, vol 414. Springer, Cham. https://doi.org/10.1007/978-3-030-93352-4_3

Download citation

Publish with us

Policies and ethics