Skip to main content

The Taurine-Conjugated Bile Acid (TUDCA) Normalizes Insulin Secretion in Pancreatic β-Cells Exposed to Fatty Acids: The Role of Mitochondrial Metabolism

  • Chapter
  • First Online:
Taurine 12

Abstract

Bile acid tauroursodeoxycholic (TUDCA), formed from the association of ursodeoxycholic acid (UDCA) with taurine, has already been shown to increase mitochondrial biogenesis and cell survival, in addition to reduce reticulum stress markers in different cell types. However, its mechanism of action upon insulin secretion control in obesity is still unknown. In this sense, we seek to clarify whether taurine, associated with bile acid, could improve the function of the pancreatic β-cells exposed to fatty acids through the regulation of mitochondrial metabolism. To test this idea, insulin-producing cells (INS1-E) were exposed to a fatty acid mix containing 500 μM of each palmitate and oleate for 48 hours treated or not with 300 μM of TUDCA. After that, glucose-stimulated insulin secretion and markers of mitochondrial metabolism were evaluated. Our results showed that the fatty acid mix was efficient in inducing hyperfunction of INS1-E cells as observed by the increase in insulin secretion, protein expression of citrate synthase, and mitochondrial density, without altering cell viability. The treatment with TUDCA normalized insulin secretion, reducing the protein expression of citrate synthase, mitochondrial mass, and the mitochondrial membrane potential. This effect was associated with a decrease in the generation of mitochondrial superoxide and c-Jun N-terminal kinase (JNK) protein content. The findings are also consistent with the hypothesis that TUDCA normalizes insulin secretion by improving mitochondrial metabolism and redox balance. Thus, it highlights likely mechanisms of the action of this bile acid on the glycemic homeostasis reestablishment in obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DM2 :

Type 2 diabetes mellitus

cAMP :

Cyclic adenosine monophosphate

CREB :

cAMP response element-binding protein

CS :

Citrate synthase

FA :

Fatty acids

FADH 2 :

Flavin adenine dinucleotide

GAPDH :

Glyceraldehyde-3-phosphate dehydrogenase

IHME :

Institute for Health Metrics and Evaluation

INS-1E :

Rat pancreatic ß-cell line

JNK :

c-Jun N-terminal kinase

NADH :

Nicotinamide adenine dinucleotide

NRF1 :

Nuclear respiratory factor 1

PGC1α :

Peroxisome proliferator-activated receptor-gamma coactivator 1-alpha

PKA :

Protein kinase A

TFAM :

Mitochondrial transcription factor A

TUDCA :

tauroursodeoxycholic acid

UCP2 :

Uncoupling protein 2

UDCA :

Ursodeoxycholic acid

References

  • Abu Bakar MH, Sarmidi MR (2017) Association of cultured my-otubes and fasting plasma metabolite profiles with mitochondrial dysfunction in type 2 diabetes subjects. Mol BioSyst 13(9):1838–1853

    Article  CAS  Google Scholar 

  • Besseiche A, Riveline JP, Delavallée L, Foufelle F, Gautier JF, Blondeau B (2018) Oxidative and energetic stresses mediate beta-cell dys-function induced by PGC-1α. Diabetes Metab 44(1):45–54

    Article  CAS  Google Scholar 

  • Biden TJ, Robinson D, Cordery D, Hughes WE, Busch AK (2004) Chronic effects of fatty acids on pancreatic β-cell function: new insights from functional genomics. Diabetes 53(Suppl 1):159–165

    Article  Google Scholar 

  • Boatright JH, Nickerson JM, Moring AG, Pardue MT (2009) Bile acids in treatment of ocular disease. J Ocul Biol Dis Inf 2(3):149–159

    Article  Google Scholar 

  • Branco RCS, Camargo RL, Batista TM, Vettorazzi JF, Borck PC, Dos Santos-Silva JCR, Boschero AC, Zoppi CC, Carneiro EM (2017) Protein malnutrition blunts the increment of taurine transporter expression by a high-fat diet and impairs taurine reestablishment of insulin secretion. FASEB J 31(9):4078–4087

    Article  CAS  Google Scholar 

  • Bronczek GA, Vettorazzi JF, Soares GM, Kurauti MA, Santos C, Bonfim MF, Carneiro EM, Balbo SL, Boschero AC, Júnior JMC (2019) The bile acid TUDCA improves beta-cell mass and reduces insulin degra-dation in mice with early-stage of type-1 diabetes. Front Physiol 10:561

    Article  Google Scholar 

  • Buhlman LM (2016) Mitochondrial mechanisms of degeneration and re-pair in parkinson’s disease. Springer, Cham

    Book  Google Scholar 

  • Carlsson C, Borg LAH, Welsh N (1999) Sodium palmitate induces partial mitochondrial uncoupling and reactive oxygen species in rat pancreatic islets in vitro. Endocrinology 140(8):3422–3428

    Article  CAS  Google Scholar 

  • Cavaghan MK, Ehrmann DA, Polonsky KS (2000) Interactions between insulin resistance and insulin secretion in the development of glucose intolerance. J Clin Invest 106(3):329–333

    Article  CAS  Google Scholar 

  • Cen J, Sargsyan E, Bergsten P (2016) Fatty acids stimulate insulin secretion from human pancreatic islets at fasting glucose concentrations via mitochondria-dependent and -independent mechanisms. Nutr Metab (London) 13(1):59

    Article  Google Scholar 

  • Ciregia F, Bugliani M, Ronci M, Giusti L, Boldrini C, Mazzoni MR, Mossuto S, Grano F, Cnop M, Marselli L, Giannaccini G, Urbani A, Lucacchini A, Marchetti P (2017) Palmitate-induced lipotoxicity alters acetylation of multiple proteins in clonal β-cells and human pancreatic islets. Sci Rep 7(1):13445

    Article  Google Scholar 

  • Combes B, Carithers RL Jr, Maddrey WC, Munoz S, Garcia-Tsao G, Bonner GF, Boyer JL, Luketic VA, Shiffman ML, Peters MG, White H, Zetterman RK, Risser R, Rossi SS, Hofmann AF (1999) Biliary bile acids in primary biliary cirrhosis: effect of ursodeoxycholic acid. Hepatology 29(6):1649–1654

    Article  CAS  Google Scholar 

  • Engin F, Yermalovich A, Ngyuen T, Hummasti S, Fu W, Eizirik DL, Mathis D, Hotamisligil GS (2013) Restoration of the unfolded protein response in pancreatic β-cells protects mice against type 1 diabetes. Sci Transl Med 5(211):211ra156

    Article  Google Scholar 

  • Fu Z, Gilbert ER, Liu D (2012) Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr Diabetes Rev 9(1):25–53

    Article  Google Scholar 

  • Gonzalez A, Merino B, Marroquí L, Ñeco P, Alonso-Magdalena P, Caballero-Garrido E, Vieira E, Soriano S, Gomis R, Nadal A, Quesada I (2013) Insulin hypersecretion in islets from diet-induced hyperinsulinemic obese female mice is associated with several functional adaptations in individual β cells. Endocrinology 154(10):3515–3524

    Article  CAS  Google Scholar 

  • Institute for Health Metrics and Evaluation (IHME). (2018). Findings from the global burden of disease study 2017. Retrieved from http://www.healthdata.org/sites/default/files/files/policy_report/2019/GBD_2017_Booklet_Issuu_2.pdf

  • Irles E, Ñeco P, Lluesma M, Villar-Pazos S, Santos-Silva JC, Vettorazzi JF, Alonso-Magdalena P, Carneiro EM, Boschero AC, Nadal A, Quesada I (2015) Enhanced glucose-induced intracellular signaling promotes insulin hypersecretion: pancreatic beta-cell functional adaptations in a model of genetic obesity and prediabetes. Mol Cell Endocrinol 404:46–55

    Article  CAS  Google Scholar 

  • Karaskov E, Scott C, Zhang L, Teodoro T, Ravazzola M, Volchuk A (2006) Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic β-cell apoptosis. Endocrinology 147(7):3398–3407

    Article  CAS  Google Scholar 

  • Kumar DP, Rajagopal S, Mahavadi S, Mirshahi F, Grider JR, Murthy KS, Sanyal AJ (2012) Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β-cells. Biochem Biophys Res Commun 427(3):600–605

    Article  CAS  Google Scholar 

  • Kusaczuk M (2019) Tauroursodeoxycholate—bile acid with chaperoning activity: molecular and cellular effects and therapeutic perspectives. Cell 8(12):1471

    Article  CAS  Google Scholar 

  • Lin N, Chen H, Zhang H, Wan X, Su Q (2012) Mitochondrial reactive oxygen species (ROS) inhibition ameliorates palmitate-induced INS-1 beta-cell death. Endocrine 42(1):107–117

    Article  CAS  Google Scholar 

  • Malo A, Krüger B, Seyhun E, Schäfer C, Hoffmann RT, Göke B, Kubisch CH (2010) Tauroursodeoxycholic acid reduces endoplasmic reticulum stress, trypsin activation and acinar cell apoptosis while increasing secretion in rat pancreatic acini. Am J Physiol Gastrointest Liver Physiol 299(4):G877–G886

    Article  CAS  Google Scholar 

  • Muoio DM, Newgard CB (2008) Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and β-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol 9(3):193–205

    Article  CAS  Google Scholar 

  • Oberhauser L, Granziera S, Colom A, Goujon A, Lavallard V, Matile S, Roux A, Brun T, Maechler P (2020) Palmitate and oleate modify membrane fluidity and kinase activities of INS-1E β-cells alongside altered metabolism-secretion coupling. Biochim Biophys Acta, Mol Cell Res 1867(2):118619

    Article  CAS  Google Scholar 

  • Okada T, Furuhashi N, Kuromori Y, Miyashita M, Iwata F, Harada K (2005) Plasma palmitoleic acid content and obesity in children. Am J Clin Nutr 82(4):747–750

    Article  CAS  Google Scholar 

  • Oropeza D, Jouvet N, Bouyakdan K, Perron G, Ringuette LJ, Philipson LH, Kiss RS, Poitout V, Alquier T, Estall JL (2015) PGC-1 coactivators in β-cells regulate lipid metabolism and are essential for insulin secretion coupled to fatty acids. Mol Metab 4(11):811–822

    Article  CAS  Google Scholar 

  • Özcan U, Yilmaz E, Özcan L, Furuhashi M, Vaillancourt E, Smith RO, Görgün CZ, Hotamisligil GS (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 Diabetes. Science 313(5790):1137–1140

    Article  Google Scholar 

  • Özcan L, Ergin AS, Lu A, Chung J, Sarkar S, Nie D, Myers MG, Özcan U (2009) Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab 9(1):35–51

    Article  Google Scholar 

  • Ribeiro RA, Santos-Silva JC, Vettorazzi JF, Cotrim BB, Mobiolli DDM, Boschero AC, Carneiro EM (2012) Taurine supplementation prevents morphophysiological alterations in high-fat diet mice pancreatic β-cells. Amino Acids 43(4):1791–1801

    Article  CAS  Google Scholar 

  • Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE (2005) Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 54(1):8–14

    Article  CAS  Google Scholar 

  • Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM (2017) Mitochondrial dynamics in type 2 diabetes: pathophysiological implications. Redox Biol 11:673–645

    Article  Google Scholar 

  • Santos-Silva JC, Ribeiro RA, Vettorazzi JF, Irles E, Rickli S, Borck PC, Porciuncula PM, Quesada I, Nadal A, Boschero AC, Carneiro EM (2015) Taurine supplementation ameliorates glucose homeostasis, prevents insulin and glucagon hypersecretion, and controls β, α, and δ-cell masses in genetic obese mice. Amino Acids 47(8):1533–1548

    Article  CAS  Google Scholar 

  • Tian G, Maria Sol ER, Xu Y, Shuai H, Tengholm A (2015) Impaired cAMP generation contributes to defective glucose-stimulated insulin secretion after long-term exposure to palmitate. Diabetes 64(3):904–915

    Article  CAS  Google Scholar 

  • Vang S, Longley K, Steer CJ, Low WC (2014) The unexpected uses of urso- and tauroursodeoxycholic acid in the treatment of non-liver diseases. Glob Adv Health Med 3(3):58–69

    Article  Google Scholar 

  • Vettorazzi JF, Ribeiro RA, Borck PC, Branco RCS, Soriano S, Merino B, Boschero AC, Nadal A, Quesada I, Carneiro EM (2016) The bile acid TUDCA increases glucose-induced insulin secretion via the cAMP/PKA pathway in pancreatic beta cells. Metabolism 65(3):54–63

    Article  CAS  Google Scholar 

  • Watson ML, Macrae K, Marley AE, Hundal HS (2011) Chronic effects of palmitate overload on nutrient-induced insulin secretion and autocrine signalling in pancreatic MIN6 beta cells. PLoS One 6(10):e25975

    Article  CAS  Google Scholar 

  • Wollheim CB, Maechler P (2002) β-cell mitochondria and insulin secretion: messenger role of nucleotides and metabolites. Diabetes 51(Suppl 1):S37–S42

    Article  CAS  Google Scholar 

  • Xie Q, Khaoustov VI, Chung CC, Sohn J, Krishnan B, Lewis DE, Yoffe B (2002) Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress-induced caspase-12 activation. Hepatology 36(3):592–601

    Article  CAS  Google Scholar 

  • Yoon JC, Xu G, Deeney JT, Yang SN, Rhee J, Puigserver P, Levens AR, Yang R, Zhang CY, Lowell BB, Berggren PO, Newgard CB, Bonner-Weir S, Weir G, Spiegelman BM (2003) Suppression of β cell energy metabolism and insulin release by PGC-1α. Dev Cell 5(1):73–83

    Article  CAS  Google Scholar 

  • Zhu Q, Zhong JJ, Jin JF, Yin XM, Miao H (2013) Tauroursodeoxycholate, a chemical chaperone, prevents palmitate-induced apoptosis in pancreatic β-cells by reducing ER stress. Exp Clin Endocrinol Diabetes 121(1):43–47

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

dos Reis Araujo, T., Santiago, D., Simões, P., Guimarães, F., Zoppi, C.C., Carneiro, E.M. (2022). The Taurine-Conjugated Bile Acid (TUDCA) Normalizes Insulin Secretion in Pancreatic β-Cells Exposed to Fatty Acids: The Role of Mitochondrial Metabolism. In: Schaffer, S.W., El Idrissi, A., Murakami, S. (eds) Taurine 12. Advances in Experimental Medicine and Biology, vol 1370. Springer, Cham. https://doi.org/10.1007/978-3-030-93337-1_28

Download citation

Publish with us

Policies and ethics