Skip to main content

Brain MRI Segmentation Using Autoencoders

  • Conference paper
  • First Online:
Pan-African Artificial Intelligence and Smart Systems (PAAISS 2021)

Abstract

Brain MRI segmentation is a popular area of research that has the potential to improve the efficiency and effectiveness of brain related diagnoses. In the past, experts in this field were required to manually segment brain MRIs. This grew to be a tedious, time consuming task that was prone to human error. Through technological advancements such as improved computational power and availability of libraries to manipulate MRI formats, automated segmentation became possible. This study investigates the effectiveness of a deep learning architecture called an autoencoder in the context of automated brain MRI segmentation. Focus is centred on two types of autoencoders: convolutional autoencoders and denoising autoencoders. The models are trained on unfiltered, min, max, average and gaussian filtered MRI scans to investigate the effect of these filtering schemes on segmentation. In addition, the MRI scans are passed in either as whole images or image patches, to determine the quantity of contextual image data that is necessary for effective segmentation. Ultimately the image patches obtained the best results when exposed to the convolutional autoenocoder and gaussian filtered brain MRI scans, with a dice similarity coefficient of 64.18%. This finding demonstrates the importance of contextual information during MRI segmentation by deep learning and paves the way for the use of lightweight autoencoders with less computational overhead and the potential for parallel execution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N4 bias field correction. https://simpleitk.readthedocs.io/en/master/link_N4BiasFieldCorrection_docs.html. Accessed 05 Sept 2021

  2. Adaloglou, N.: In-layer normalization techniques for training very deep neural networks (2020). https://theaisummer.com/normalization/. Accessed 05 Sept 2021

  3. Atlason, H.E., Love, A., Sigurdsson, S., Gudnason, V., Ellingsen, L.M.: Unsupervised brain lesion segmentation from MRI using a convolutional autoencoder. In: Medical Imaging 2019: Image Processing, vol. 10949, p. 109491H. International Society for Optics and Photonics (2019)

    Google Scholar 

  4. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  5. Bandaria, J.: Brain MRI image segmentation using stacked denoising autoencoders. https://bit.ly/3dE0KFs (2017). Accessed 05 Sept 2021

  6. Castellini, J., Poggioni, V., Sorbi, G.: Fake twitter followers detection by denoising autoencoder. In: Proceedings of the International Conference on Web Intelligence, pp. 195–202 (2017)

    Google Scholar 

  7. Crum, W.R., Camara, O., Hill, D.L.: Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans. Med. Imaging 25(11), 1451–1461 (2006)

    Article  Google Scholar 

  8. Cui, Z., Yang, J., Qiao, Y.: Brain MRI segmentation with patch-based CNN approach. In: 2016 35th Chinese Control Conference (CCC), pp. 7026–7031. IEEE (2016)

    Google Scholar 

  9. Dolz, J., Desrosiers, C., Wang, L., Yuan, J., Shen, D., Ayed, I.B.: Deep CNN ensembles and suggestive annotations for infant brain MRI segmentation. Comput. Med. Imaging Graph. 79, 101660 (2020)

    Article  Google Scholar 

  10. Dubey, A.K., Jain, V.: Comparative study of convolution neural network’s Relu and Leaky-Relu activation functions. In: Mishra, S., Sood, Y.R., Tomar, A. (eds.) Applications of Computing, Automation and Wireless Systems in Electrical Engineering. LNEE, vol. 553, pp. 873–880. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-6772-4_76

    Chapter  Google Scholar 

  11. Fluck, O., Vetter, C., Wein, W., Kamen, A., Preim, B., Westermann, R.: A survey of medical image registration on graphics hardware. Comput. Methods Programs Biomed. 104(3), e45–e57 (2011)

    Article  Google Scholar 

  12. Gondara, L.: Medical image denoising using convolutional denoising autoencoders. In: 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), pp. 241–246. IEEE (2016)

    Google Scholar 

  13. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  14. Ivanovska, T., Wang, L., Laqua, R., Hegenscheid, K., Völzke, H., Liebscher, V.: A fast global variational bias field correction method for MR images. In: 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 667–671. IEEE (2013)

    Google Scholar 

  15. Karimpouli, S., Tahmasebi, P.: Segmentation of digital rock images using deep convolutional autoencoder networks. Comput. Geosci. 126, 142–150 (2019)

    Article  Google Scholar 

  16. Kathuria, A.: Intro to optimization in deep learning: busting the myth about batch normalization (2018). https://bit.ly/2KXTA63. Accessed 05 Sept 2021

  17. Kennedy, D.N., et al.: CANDIShare: a resource for pediatric neuroimaging data. Neuroinformatics 10, 319–322 (2012)

    Article  Google Scholar 

  18. Lee, B., Yamanakkanavar, N., Choi, J.Y.: Automatic segmentation of brain MRI using a novel patch-wise U-Net deep architecture. PLoS ONE 15(8), e0236493 (2020)

    Article  Google Scholar 

  19. Liang, Y., Song, W., Dym, J.P., Wang, K., He, L.: CompareNet: anatomical segmentation network with deep non-local label fusion. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 292–300. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_33

    Chapter  Google Scholar 

  20. Lu, X., Tsao, Y., Matsuda, S., Hori, C.: Speech enhancement based on deep denoising autoencoder. In: Interspeech, vol. 2013, pp. 436–440 (2013)

    Google Scholar 

  21. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015)

  22. Subramanian, P., Faizal Leerar, K., Hafiz Ahammed, K.P., Sarun, K., Mohammed, Z.: Image registration methods. Int. J. Chem. Sci 14, 825–828 (2016)

    Google Scholar 

  23. Rane, R.: Efficient pretraining techniques for brain-MRI datasets (2019). https://doi.org/10.13140/RG.2.2.11782.11843

  24. Song, J., Zhang, Z.: Brain tissue segmentation and bias field correction of MR image based on spatially coherent FCM with nonlocal constraints. Comput. Math. Methods Med. 2019 (2019)

    Google Scholar 

  25. Spolti, A., et al.: Application of u-net and auto-encoder to the road/non-road classification of aerial imagery in urban environments. In: VISIGRAPP (4: VISAPP), pp. 607–614 (2020)

    Google Scholar 

  26. Sun, X., et al.: Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions. Biomed. Eng. Online 14(1), 1–17 (2015)

    Article  Google Scholar 

  27. Sun, Y., Xue, B., Zhang, M., Yen, G.G.: A particle swarm optimization-based flexible convolutional autoencoder for image classification. IEEE Trans. Neural Netw. Learn. Syst. 30(8), 2295–2309 (2018)

    Article  Google Scholar 

  28. Tran, H.T., Hogg, D.: Anomaly detection using a convolutional winner-take-all autoencoder. In: Proceedings of the British Machine Vision Conference 2017. British Machine Vision Association (2017)

    Google Scholar 

  29. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Bottou, L.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12) (2010)

    Google Scholar 

  30. Yusiong, J.P.T., Naval, P.C.: Multi-scale autoencoders in autoencoder for semantic image segmentation. In: Nguyen, N.T., Gaol, F.L., Hong, T.-P., Trawiński, B. (eds.) ACIIDS 2019. LNCS (LNAI), vol. 11431, pp. 587–599. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14799-0_51

    Chapter  Google Scholar 

  31. Zhang, Q.: An overview of normalization methods in deep learning. https://zhangtemplar.github.io/normalization/. Accessed 05 Sept 2021

  32. Zhao, A., Balakrishnan, G., Durand, F., Guttag, J.V., Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8543–8553 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandlenkosi Gwetu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jackpersad, K., Gwetu, M. (2022). Brain MRI Segmentation Using Autoencoders. In: Ngatched, T.M.N., Woungang, I. (eds) Pan-African Artificial Intelligence and Smart Systems. PAAISS 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 405. Springer, Cham. https://doi.org/10.1007/978-3-030-93314-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93314-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93313-5

  • Online ISBN: 978-3-030-93314-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics