Skip to main content

Conceptual Navigation in Large Knowledge Graphs

  • Chapter
  • First Online:
Complex Data Analytics with Formal Concept Analysis
  • 343 Accesses

Abstract

A growing part of Big Data is made of knowledge graphs. Major knowledge graphs such as Wikidata, DBpedia or the Google Knowledge Graph count millions of entities and billions of semantic links. A major challenge is to enable their exploration and querying by end-users. The SPARQL query language is powerful but provides no support for exploration by end-users. Question answering is user-friendly but is limited in expressivity and reliability. Navigation in concept lattices supports exploration but is limited in expressivity and scalability. In this paper, we introduce a new exploration and querying paradigm, Abstract Conceptual Navigation (ACN), that merges querying and navigation in order to reconcile expressivity, usability, and scalability. ACN is founded on Formal Concept Analysis (FCA) by defining the navigation space as a concept lattice. We then instantiate the ACN paradigm to knowledge graphs (Graph-ACN) by relying on Graph-FCA, an extension of FCA to knowledge graphs. We continue by detailing how Graph-ACN can be efficiently implemented on top of SPARQL endpoints, and how its expressivity can be increased in a modular way. Finally, we present a concrete implementation available online, Sparklis, and a few application cases on large knowledge graphs.

This research is supported by ANR project PEGASE (ANR-16-CE23-0011-08).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.w3.org/.

  2. 2.

    See https://lod-cloud.net/.

  3. 3.

    See http://webdatacommons.org/.

  4. 4.

    https://ur-aida.cirad.fr/nos-recherches/projets-et-expertises/knomana.

  5. 5.

    Available online at http://www.irisa.fr/LIS/ferre/sparklis/.

  6. 6.

    https://ocsigen.org/js_of_ocaml/3.1.0/manual/overview.

  7. 7.

    https://www.wikidata.org/.

  8. 8.

    http://www.persee.fr/.

  9. 9.

    http://data.persee.fr/.

  10. 10.

    https://anr.fr/Project-ANR-16-CE23-0011.

References

  1. Alam, M., Buzmakov, A., Napoli, A.: Exploratory knowledge discovery over web of data. Discrete Applied Mathematics 249, 2–17 (2018). https://doi.org/10.1016/j.dam.2018.03.041

    Article  MathSciNet  Google Scholar 

  2. Arenas, M., Grau, B., Kharlamov, E., Š. Marciuška, Zheleznyakov, D., Jimenez-Ruiz, E.: SemFacet: Semantic faceted search over YAGO. In: World Wide Web Conf. Companion, pp. 123–126. WWW Steering Committee (2014)

    Google Scholar 

  3. Bobed, C., Douze, L., Ferré, S., Marcilly, R.: Sparklis over PEGASE knowledge graph: a new tool for pharmacovigilance. In: A. Waagmeester, et al. (eds.) Int. Conf. Semantic Web Applications and Tools for Life Sciences (SWAT4LS), CEUR Workshop Proceedings, vol. 2275 (2018)

    Google Scholar 

  4. Carpineto, C., Romano, G.: A lattice conceptual clustering system and its application to browsing retrieval. Machine Learning 24(2), 95–122 (1996)

    Google Scholar 

  5. Chekol, M.W., Euzenat, J., Genevès, P., Layaïda, N.: SPARQL query containment under SHI axioms. In: AAAI Conf. Artificial Intelligence (2012)

    Google Scholar 

  6. Ducrou, J., Eklund, P.: An intelligent user interface for browsing and search MPEG-7 images using concept lattices. Int. J. Foundations of Computer Science, World Scientific 19(2), 359–381 (2008)

    Google Scholar 

  7. Ferré, S.: Conceptual navigation in RDF graphs with SPARQL-like queries. In: L. Kwuida, B. Sertkaya (eds.) Int. Conf. Formal Concept Analysis, LNCS 5986, pp. 193–208. Springer (2010)

    Google Scholar 

  8. Ferré, S.: A proposal for extending formal concept analysis to knowledge graphs. In: J. Baixeries, C. Sacarea, M. Ojeda-Aciego (eds.) Int. Conf. Formal Concept Analysis (ICFCA), LNCS 9113, pp. 271–286. Springer (2015)

    Google Scholar 

  9. Ferré, S.: Bridging the gap between formal languages and natural languages with zippers. In: H. Sack, et al. (eds.) Extended Semantic Web Conf. (ESWC), pp. 269–284. Springer (2016)

    Google Scholar 

  10. Ferré, S.: A SPARQL 1.1 query builder for the data analytics of vanilla RDF graphs. Research report, IRISA, team SemLIS (2018). URL https://hal.inria.fr/hal-01820469

  11. Ferré, S., Cellier, P.: Graph-FCA: An extension of formal concept analysis to knowledge graphs. Discrete Applied Mathematics 273, 81–102 (2019). https://doi.org/10.1016/j.dam.2019.03.003. URL http://www.sciencedirect.com/science/article/pii/S0166218X19301532

  12. Ferré, S., Ridoux, O.: A file system based on concept analysis. In: Y. Sagiv (ed.) Int. Conf. Rules and Objects in Databases, LNCS 1861, pp. 1033–1047. Springer (2000)

    Google Scholar 

  13. Ferré, S., Ridoux, O.: An introduction to logical information systems. Information Processing & Management 40(3), 383–419 (2004)

    Article  Google Scholar 

  14. Ganter, B., Wille, R.: Formal Concept Analysis — Mathematical Foundations. Springer (1999)

    Google Scholar 

  15. Godin, R., Missaoui, R., April, A.: Experimental comparison of navigation in a Galois lattice with conventional information retrieval methods. International Journal of Man-Machine Studies 38(5), 747–767 (1993)

    Article  Google Scholar 

  16. Hahn, G., Tardif, C.: Graph homomorphisms: structure and symmetry. In: Graph symmetry, pp. 107–166. Springer (1997)

    Google Scholar 

  17. Hildebrand, M., van Ossenbruggen, J., Hardman, L.: /facet: A browser for heterogeneous semantic web repositories. In: I.C. et al (ed.) Int. Semantic Web Conf., LNCS 4273, pp. 272–285. Springer (2006)

    Google Scholar 

  18. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman & Hall/CRC (2009)

    Google Scholar 

  19. Höffner, K., Walter, S., Marx, E., Lehmann, J., Ngomo, A.C.N., Usbeck, R.: Overcoming challenges of semantic question answering in the semantic web. Semantic Web Journal (2016)

    Google Scholar 

  20. Kaufmann, E., Bernstein, A.: Evaluating the usability of natural language query languages and interfaces to semantic web knowledge bases. J. Web Semantics 8(4), 377–393 (2010)

    Article  Google Scholar 

  21. Kötters, J.: Concept lattices of a relational structure. In: H. Pfeiffer, and others (eds.) Int. Conf. Conceptual Structures for STEM Research and Education, LNAI 7735, pp. 301–310. Springer (2013)

    Google Scholar 

  22. Kuznetsov, S.O., Samokhin, M.V.: Learning closed sets of labeled graphs for chemical applications. In: S. Kramer, B. Pfahringer (eds.) Int. Conf. Inductive Logic Programming, LNCS 3625, pp. 190–208. Springer (2005)

    Google Scholar 

  23. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web Journal (2013). Under review.

    Google Scholar 

  24. Liquiere, M., Sallantin, J.: Structural machine learning with galois lattice and graphs. In: Int. Conf. Machine Learning, pp. 305–313 (1998)

    Google Scholar 

  25. Mika, P.: On schema.org and why it matters for the web. IEEE Internet Computing 19(4), 52–55 (2015)

    Google Scholar 

  26. Muggleton, S., Raedt, L.D.: Inductive logic programming: Theory and methods. Journal of Logic Programming 19,20, 629–679 (1994)

    Google Scholar 

  27. Plotkin, G.: Automatic methods of inductive inference. Ph.D. thesis, Edinburgh University (1971)

    Google Scholar 

  28. Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Relational concept analysis: mining concept lattices from multi-relational data. Annals of Mathematics and Artificial Intelligence 67(1), 81–108 (2013)

    Article  MathSciNet  Google Scholar 

  29. Sacco, G.M., Tzitzikas, Y. (eds.): Dynamic taxonomies and faceted search. The information retrieval series. Springer (2009)

    Google Scholar 

  30. Sowa, J.: Conceptual structures. Information processing in man and machine. Addison-Wesley, Reading, US (1984)

    Google Scholar 

  31. SPARQL 1.1 query language (2012). URL http://www.w3.org/TR/sparql11-query/. W3C Recommendation

  32. Unger, C., Ngomo, A.C.N., Cabrio, E.: 6th open challenge on question answering over linked data (QALD-6). In: H. Sack, et al. (eds.) Semantic Web Evaluation Challenge, pp. 171–177. Springer (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Ferré .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferré, S. (2022). Conceptual Navigation in Large Knowledge Graphs. In: Missaoui, R., Kwuida, L., Abdessalem, T. (eds) Complex Data Analytics with Formal Concept Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-93278-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93278-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93277-0

  • Online ISBN: 978-3-030-93278-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics